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Focus of This Chapter

Key Focus: This chapter focuses on the issue of social optimal
pricing, where one service provider chooses prices to maximize the
social welfare.

Theoretic Approach: Convex Optimization
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Convex Optimization

Largely follow the discussions in book “Convex Optimization” by
Stephen Boyd and Lieven Vandenberghe.

Definition (Convex Optimization)

Convex optimization studies the problem of minimizing convex functions
(or equivalently, maximizing concave functions) over convex sets.
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Section 4.1
Theory: Dual-based Optimization
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Prelims

Notations
I Rn: the set of all real n-vectors

F Each vector in Rn is called a point of Rn.
F R1 or R denotes the set of all real 1-vectors or all real numbers.

I Rm×n: the set of all m × n real matrices
I f : Rn → Rm: a function that maps some real n-vectors (called the

domain of function f ) into real m-vectors
F D(f ): the domain of function f

Concepts
I Convex Set
I Convex Function
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Convex Set

Definition (Convex Set)

A nonempty set X ⊆ Rn is convex, if for any x1, x2 ∈ X and any θ ∈ R
with 0 ≤ θ ≤ 1, we have:

θx1 + (1− θ)x2 ∈ X
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Convex Set

Geometrically, a set is convex if every point in the set can be reached
by every other point, along an inner straight path between them.

Examples of convex and non-convex sets:

x1

x2

Figure: (i) Convex, (ii) Non-convex, and (iii) Non-convex.
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Convex Combinition

Convex Combination: A convex combination of points x1, ..., xk can
be expressed as

y = θ1x1 + ...+ θkxk ,

with θ1 + ...+ θk = 1 and θi ≥ 0, i = 1, ..., k.

Lemma (4.2)

A nonempty set X is convex, if and only if the convex combination of any
points in X also lies in X .
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Convex Hull

Convex Hull: The convex hull of a set X , denoted H(X ), is the
smallest convex set that contains X .

Definition (Convex Hull)

The convex hull H(X ) of a set X consists of the convex combinations of
all points in X , i.e.,

{θ1x1 + ...+ θkxk | θ1 + ...+ θk = 1, θi ≥ 0, x i ∈ X , i = 1, ..., k} .

Properties
I H(X ) is always convex;
I X ⊆ H(X );
I X = H(X ) if X is a convex set;
I H(X ) ⊆ Y where Y is any convex set that contains X .
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Convex Hull

Examples of convex hull
I Source sets:

I Convex hulls:
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Operations Preserving Convexity of Sets

Intersection: Suppose X1, ...,Xk are convex sets. Then, the
intersection of X1, ...,Xk

X , X1 ∩ ... ∩ Xk

is also a convex set.

Affine Mapping: Suppose X is a convex set in Rn, A ∈ Rm×n, and
b ∈ Rm. Then, the affine mapping of X

Y , {Ax + b | x ∈ X}

is also a convex set.
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Convex (and Concave) Function

Definition (Convex Function)

A function f : Rn → R is convex, if

1 D(f ) is a convex set, and

2 for all x , y ∈ D(f ) and θ ∈ R with 0 ≤ θ ≤ 1, we have:

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

Definition (Concave Function)

A function f (·) is concave if and only if −f (·) is convex.

A function f (·) can be neither convex nor concave, e.g., f (x) = x3.
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Convex Function

Geometrically, a function f (·) is convex if the chord from any point
(x , f (x)) to (y , f (y)) lies above the graph of f (·).

Illustration of Convex Function f (·):

(
x , f (x)

) (
y , f (y)

)chord

0 x y

f (·)
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Generalized Definition of Convex Function

Definition (Convex Function)

A function f (·) is convex, if and only if (i) D(f ) is convex and (ii)

f (θ1x1 + ...+ θkxk) ≤ θ1f (x1) + ...+ θk f (xk),

for any x1, ..., xk ∈ D(f ), when θ1 + ...+ θk = 1 and θi ≥ 0, i = 1, ..., k .

Examples of convex functions
I 2x , 3x , ex , etc.
I x2, x4, x6, etc.
I −log2(x), −ln(x), etc.
I ...
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First-Order Condition

First-Order Derivative (Gradient): the first-order derivative of a
scalar-valued function f (·) at a point x ∈ D(f ), denoted by ∇f (x), is
an n-vector with the i-th component given by

∇f (x)i =
∂f (x)

∂xi
, i = 1, ..., n,

I xi : the i-th coordinate of the vector x ;
I ∂f (x)

∂xi
: the partial derivative of f (x) with respect to xi .

Lemma (First-Order Condition)

A differentiable function f (·) is convex, if and only if D(f ) is convex and

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y ∈ D(f ).
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First-Order Condition

Geometrically, the first-order condition means that the line passing
through any point (x , f (x)) along the gradient direction ∇f (x) lies
under the graph of f (·).

Illustration of First-order Condition:

(
y , f (y)

)
(
x , f (x)

) l(y)

0 x y

f (·)
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Second-Order Condition

Second-Order Derivative (Hessian Matrix): the second-order
derivative of a scalar-valued function f (·) at a point x ∈ D(f ),
denoted by ∇2f (x), is an n × n matrix, given by

∇2f (x)ij =
∂2f (x)

∂xi∂xj
, i = 1, ..., n, j = 1, ..., n.

I ∂2f (x)
∂xi∂xj

: the second partial derivative of f (x) with respect to xi and xj .

Lemma (Second-Order Condition)

A twice differentiable function f (·) is convex, if and only if D(f ) is convex
and its Hessian matrix is positive semidefinite, i.e.,

∇2f (x) � 0, ∀x ∈ D(f ).
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Convex Function

Operations Preserving Convexity of Functions
I Nonnegative weighted sums: Suppose f1(·), ..., fk(·) are convex, and
θ1, ..., θk ≥ 0. Then the following function is convex:

f (x) , θ1f1(x) + ...+ θk fk(x)

I Composition with an affine mapping: Suppose g(·) is a convex function
on Rn, A ∈ Rn×m, and b ∈ Rn. Then the following function is convex:

f (x) , g(Ax + b)

I Point-wise maximum: Suppose f1(·), ..., fk(·) are convex. Then the
following function is convex:

f (x) , max{f1(x), ..., fk(x)}
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Convex Optimization

Optimization Problem: the problem of finding a point x over a
feasible set that minimizes an objective function:

Optimization Problem

minimize f (x)

subject to fi (x) ≤ 0, i = 1, ...,m.

I Objective function f (·): the objective to be minimized;
I Constraint functions fi (·): the constraints to be satisfied;
I Feasible set C: the set of all feasible points that satisfy all constraints,

C , {x ∈ D | fi (x) ≤ 0, i = 1, ...,m}.

Convex Optimization Problem: an optimization problem with convex
objective function and convex feasible set.
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Unconstrained Convex Optimization

Unconstrained Convex Optimization: a convex optimization problem
without any constraint:

minimize f (x)

Lemma (4.5)

Suppose f (·) is convex and differentiable. A feasible point x∗ ∈ C is a
global minimizer of f (·) if and only if

∇f (x∗)i =
∂f (x∗)

∂xi
= 0, ∀i = 1, ..., n.
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Unconstrained Convex Optimization

(
x∗, f (x∗)

)
0 x

f (x)
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Unconstrained Convex Optimization

Computational Methods: find an algorithm that computes a sequence
of feasible points x (0), x (1), x (2), ...x (k), with

f (x (k))→ f (x∗) as k →∞

Gradient-based Algorithms:

x (k+1) = x (k) + γ(k)d (k)

I γ(k): a positive scalar (called step size) at iteration k;
I d (k): a gradient-based n-vector (called search direction) at iteration k;
I Gradient Descent Method: d (k) , −∇f (x (k))

I Newton’s Method: d (k) , −
(
∇2f (x (k))

)−1∇f (x (k))
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Constrained Convex Optimization

Constrained Convex Optimization: a general convex optimization
problem with convex constraints (i.e., fi (·) function is convex for each
i):

minimize f (x)

subject to fi (x) ≤ 0, i = 1, ...,m,

Lemma (4.6)

Suppose f (·) is convex and differentiable. A feasible point x∗ ∈ C is a
global minimizer of f (·) if and only if

∇f (x∗)T (x − x∗) ≥ 0, ∀x ∈ C.
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Constrained Convex Optimization

Geometrically, at a minimizer x∗, the gradient ∇f (x∗) makes an angle
less than or equal to 90 degrees with all feasible variations x − x∗.

Illustration of optimal x∗:

C

x∗

∇f (x∗)

x x − x∗

Contours of f (·)

Figure: The gradient ∇f (x∗) (blue arrow) makes an angle less than or equal to
90 degrees with all feasible variations x − x∗ (red arrow).
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Constrained Convex Optimization

Computational Methods: Gradient-based Algorithms:

x (k+1) = x (k) + γ(k)d (k),

I Conditional Gradient Method:

d (k) , x (k) − x (k),

where x (k) , arg maxx∈C ∇f (x (k))T (x − x (k)) subject to
∇f (x (k))T (x − x (k)) < 0.

I Gradient Projection Method:

d (k) , x (k) − x (k),

where x (k) is given by x (k) ,
[
x (k) − s(k)∇f (x (k))

]+
. Here [·]+ denotes

a projection on the feasible set C, and s(k) is a positive scalar.
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Duality Principle

An important theoretical framework to solve convex optimization
problems.

Basic Idea: Convert the original optimization problem (called primal
problem) into a dual problem.

I The solution to the dual problem provides a lower bound to the
solution of the primal problem.

I Maximizing the objective of dual problem help us understanding the
optimal objective of the primal problem.
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Lagrange Function

Recall the constrained optimization problem

minimize f (x)

subject to fi (x) ≤ 0, i = 1, ...,m,

Definition (Lagrangian Function)

The Lagrangian function L(·) : Rn × Rm → R is defined as

L(x ,λ) , f (x) +
m∑
i=1

λi fi (x).

Intuitively, Lagrangian function is a weighted sum of the objective
function f (x) and the constraint functions fi (x).

λi ≥ 0: the weight (called Lagrange multiplier or dual variable)
associated with each constraint fi (x) ≤ 0.
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Dual Function

Definition (Dual Function)

The Lagrange dual function g : Rm → R is defined as the minimum value
of the Lagrangian function over x :

g(λ) , inf
x
L(x ,λ) = inf

x

(
f (x) +

m∑
i=1

λi fi (x)

)
.

I The dual function g(·) is always concave even if the primal problem is
not convex.

I The dual function g(·) yields a lower bound of the optimal primal
objective value f (x∗):

g(λ) ≤ f (x∗), ∀λ � 0

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 4 September 15, 2014 30 / 64



Lagrange Dual Problem

The dual function g(λ) yields lower bounds of the optimal primal
objective value f (x∗).

I How far the dual function g(λ) is apart from the optimal f (x∗)?

Lagrange Dual Problem: find the optimal dual variables λ∗ that
maximizes the dual function g(λ):

maximize g(λ)

subject to λ � 0.

I Weak duality: g(λ∗) ≤ f (x∗). The difference f (x∗)− g(λ∗) is called
the optimal duality gap.

I Strong duality: g(λ∗) = f (x∗) if the optimality gap is zero.
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Duality Gap

Duality Gap: The gap between primal and dual objectives:

f (x)− g(λ)

I The duality gap reflects how suboptimal a given point x is, without
knowing the exact value of f (x∗):

f (x)− f (x∗) ≤ f (x)− g(λ)

I Any primal-dual feasible pair {x ,λ} localizes the optimal primal and
dual objectives to an interval [g(λ), f (x)], that is,

g(λ) ≤ g(λ∗) ≤ f (x∗) ≤ f (x)
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KKT Optimality Conditions

Lemma (Karush-Kuhn-Tucker (KKT) Conditions)

Assume that the primal problem is strictly convex and the strong duality
holds. A primal-dual feasible pair {x∗,λ∗} is optimal for both primal and
dual problems, if and only if

fi (x∗) ≤ 0, λ∗i ≥ 0, λ∗i · fi (x∗) = 0, i = 1, ...,m

∇f (x∗) +
m∑
i=1

λ∗i∇fi (x∗) = 0.
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Shadow Price

Shadow Price: A geometric interpretation of the Lagrange multipliers
λi , i = 1, ...,m, in terms of economics.

I Introduce perturbing parameters u , (ui , i = 1, ...,m), and define a
perturbed version of the original primal problem:

minimize f (x)

subject to fi (x) ≤ ui , i = 1, ...,m

I Denote the optimal perturbed objective as p∗(u) = infx f (x):

∂p∗(0)

∂ui
= −λ∗i

F f (x): the total cost;
F xi : the investment on resource i ;
F ui : the limit on resource i ’s investment;

I When u is close to 0, the λ∗i reflects how much more profit the firm
could make, for a small increase in the availability of resource i .
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Solving Dual Problem

Subgradient: A vector d is called a subgradient of f (·) at a point x , if

f (z) ≥ f (x) + dT (z − x), ∀z ∈ D(f ).

Subgradient method for solving the due problem
I A subgradient d of the dual function g(λ) at a point λ satisfies:

g(µ) ≤ g(λ) + dT (µ− λ), ∀µ ∈ D(g).

I Subgradient Method:

λ(k+1) =
[
λ(k) + γ(k)d (k)

]+
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Solving Dual Problem

Lemma

For every dual optimal solution λ∗, we have ||λ(k+1) − λ∗|| < ||λ(k) − λ∗||
for all step-sizes γ(k) satisfying

0 < γ(k) < 2 · g(λ∗)− g(λ(k))

||d (k)||2
.

I The above range for γ(k) requires the dual optimal value g(λ∗), which
is usually unknown.

I In practice, we can use the following approximate step-size formula

γ(k) = α(k) · g
(k) − g(λ(k))

||d (k)||2
,

where g (k) is an approximation of g(λ∗), and 0 < α(k) < 2.
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Section 4.2:
Resource Allocation for Wireless Video Streaming
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Network Model

Video

Base Station

Voice

A single cell CDMA network with mixed video and voice users.

Voice users are background traffic: just need good enough channels.

Video users can adapt to channel conditions, but with deadline
constraints.
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Network Optimization Problem

Maximize the overall quality of video users, subject to the QoS
constraints of the voice users.

The general solution framework involve three phases
1 Average resource allocation among video users
2 Video source adaptions
3 Multiuser deadline oriented scheduling

We will focus on the formulation of Phase 1.
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Average Resource Allocation

A set N = {1, . . . ,N} video users.

Each video user n has a utility function un(xn).

I Increasing and strictly concave in the resource allocation xn.

I Corresponds to commonly used video quality measures such as the
rate-PSNR function and rate-summarization distortion functions.

I Assume un(xn) is a continuous and differentiable function.

The network resource can be transmission power (uplink) or
transmission time (downlink).
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Network Utility Maximization (NUM) Problem

NUM Problem

maximize
∑
n∈N

un (xn)

subject to
∑
n∈N

xn ≤ Xmax.

variables xn ≥ 0, ∀n ∈ N .

We will solve this using the dual-based sub-gradient method.
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Lagragian Relaxation

Relax the constraint with a dual variable λ and obtain the Lagrangian

L (x , λ) ,
∑
n

un (xn)− λ

(∑
n

xn − Xmax

)
.

λ is the shadow price for the limited resource Xmax.
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Dual-based Solution

Solve the NUM problem at two levels (separation of time scales)
I Lower level: each user n chooses xn to maximize surplus:

max
xn≥0

un (xn)− λxn, (1)

and the unique optimal solution is xn (λ). We further denote gn(λ) as
the maximum objective value of Problem (1) for a given value of λ.

I Higher level: The base station adjusts λ to solve the following problem

min
λ≥0

L (x(λ), λ) ,
∑
n

gn (λ) + λXmax,

using the sub-gradient searching method,

λ(k+1) = max

{
0, λ(k) + α(k)

(∑
n

xn
(
λ(k)

)
− Xmax

)}
.
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How to Model Wireless Resources

3G CDMA technology: users transmit using orthogonal codes
I Uplink transmissions: from users to the base station, asynchronization

transmissions leads to mutual interference among users

I Downlink transmission: from base station to users, no mutual
interference among users

In both cases, need to model the resource constraint for the video
users, given the voice users’ QoS requirements
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Wireless Uplink Streaming

Consider M voice users and N video users, mutually interfering with
each other

A user’s QoS is determined by the Signal-to-interference plus noise
ratio (SINR)

A voice user needs to achieve an SINR target of γvoice :

W

Rvoice

GvoiceP
r
voice

n0W + (M − 1)P r
voice + P r ,all

video

≥ γvoice .

I W : total bandwidth
I n0: background noise density
I Rvoice : voice user’s target data rate
I Gvoice : related to voice users’ modulation and coding choices
I P r

voice : a voice user’s received power at the base station
I P r ,all

video : total video users’ received power at the base station
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Wireless Uplink Streaming

To satisfy the target SINR for M voice users, we can derive the
maximum total video users’ received power at the base station

P r ,max
video =

(
WGvoice

Rvoiceγvoice
− (M − 1)

)
P r
voice − n0W .
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Wireless Uplink Streaming

The NUM problem ⇒ video transmission power optimization problem
during time [0,T ]:

NUM Problem for Wireless Uplink Streaming - Version 1

max
{pn(t),∀n}

N∑
n=1

un

(∫ T

0
rn (p (t)) dt

)

s.t.
N∑

n=1

hnpn (t) ≤ P r ,max
video , ∀t ∈ [0,T ]

0 ≤ pn (t) ≤ Pmax
n ,∀n, ∀t ∈ [0,T ]

I pn(t): video user n’s transmission power at time t.
I hn: channel gain from the transmitter of user n to the base station.
I Pmax

n : maximum peak transmission power of user n.
I rn (p(t)): data rate achieved by user n at time t, depending on all

users’ transmission power p(t).
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Wireless Uplink Streaming

Solving functions are challenging, hence needs further simplification.

Assume video users transmit via time-division-multiplexing (TDM)
I Video users take turns to transmit.
I The constant data rate of video user n is

RTDM
n = W log2

(
1 +

min {hnPmax
n ,P r ,max

video }
n0W + MP r

voice

)
.

The NUM problem ⇒ the transmission time optimization problem

NUM Problem for Wireless Uplink Streaming -Version 2

max
{tn≥0,∀n}

N∑
n=1

un
(
RTDM
n tn

)
, s.t.

N∑
n=1

tn ≤ T .

I tn: transmission time of video user n.
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Wireless Downlink Streaming

Orthogonal transmission without mutual interferences

Video users can transmit simultaneously

A video user n transmits with power pn and achieves a data rate

rn(pn) = W log2

(
1 +

hnpn
n0W

)
.

The NUM problem ⇒ the transmission power optimization problem

NUM Problem for Wireless Downlink Streaming

max
{pn≥0,∀n}

N∑
n=1

un (T · rn(pn)) , s.t.
N∑

n=1

pn ≤ Pvideo
max .
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Section 4.3:
Wireless Service Provider Pricing
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Network Model

Provider 1

Provider 2

Provider 3

A set J = {1, . . . , J} of service providers
I Provider j has a supply Qj of resource (e.g., channel, time, power)
I Providers operate on orthogonal spectrum bands

A set I = {1, . . . , I} of users
I User i can obtain resources from multiple providers: q i = (qij ,∀j ∈ J )

I User i ’s utility function is ui
(∑J

j=1 qijcij
)

: increasing and strictly
concave
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An Example: TDMA

Each provider j has a total spectrum band of Wj .

qij : the fraction of time that user i transmits on provider j ’s band
I Constraints:

∑
i qij ≤ 1, for all j ∈ J .

cij : the data rate achieved by user i on provider j ’s band

cij = Wj log(1 +
Pi |hij |2

σ2ijWj
)

I Pi : user i ’s peak transmission power.
I hij : the channel gain between user i and network j .
I σ2

ij : the Gaussian noise variance for the channel.

ui

(∑J
j=1 qijcij

)
: user i ’ utility of the total achieved data rate

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 4 September 15, 2014 52 / 64



Social Welfare Optimization

xi (q i ): effective resource obtained by use i

xi (q i ) =
J∑

j=1

qijcij

SWO: Social Welfare Optimization Problem

maximize
∑
i∈I

ui (xi )

subject to
∑
j∈J

qijcij = xi , ∀i ∈ I,∑
i∈I

qij = Qj , ∀j ∈ J ,

variables qij , xi ≥ 0, ∀i ∈ I, j ∈ J .
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Social Welfare Optimization

We can just consider variables q in SWO, since q determines x .

I Why not?

SWO is a strictly concave maximization problem in x .
I A unique optimal solution x∗

SWO is not strictly concave maximization problem in q
I The optimal solution q∗ may not be unique
I But we can show that q∗ is unique (with probability 1) if cij ’s are

continuous random variables.
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Solving SWO Problem

We can use the dual-based sub gradient algorithm

Next we introduce the primal-dual based algorithm
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Primal-Dual Algorithm

Key idea: updating primal and dual variables simultaneously using
small step sizes

No longer requires separate of time scales.

Suitable when it is not easy to solve the optimal primary variables
under fixed dual prices.
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Some Definitions

fij(t) (or simply fij): the marginal utility of user i with respect to qij
when his demand vector is qi (t):

fij =
∂ui (qi )

∂qij
= cij

∂ui (x)

∂x

∣∣∣
x=xi=

∑J
j=1 qijcij

(x)+ = max(0, x) and

(x)+y =

{
x y > 0

(x)+ y ≤ 0.
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Primal-Dual Algorithm

Continuous Time Primal-Dual Algorithm

q̇ij = kqij (fij − pj)
+
qij
, ∀i ∈ I, ∀j ∈ J ,

ṗj = kpj

(
I∑

i=1

qij − Qj

)+

pj

, ∀j ∈ J .

kpij ’s and kpj ’s: constants representing update rates.

A user will increase resource request when marginal utility is larger
than price.

A provider will increase the price is the total demand is larger than
the supply.

When a variables (qij or pj) is zero, it will not become negative even
when the direction of the update is negative.
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Convergence of Primal-Dual Algorithm

First, construct a La Salle function V (q(t),p(t)):

V (t) = V (q(t),p(t))

=
∑
i ,j

1

kqij

∫ qij (t)

0
(β − q∗ij)dβ +

∑
j

1

kpj

∫ pj (t)

0
(β − p∗j )dβ.

Second, show V (q(t),p(t)) is non-increasing for any solution
trajectory (q(t),p(t)) that following the primal-dual algorithm, i.e.,

V̇ (t) =
∑
i ,j

∂V

∂qij
q̇ij +

∑
j

∂V

∂pj
ṗj ,

is always nonpositive.

Since V (t) is lower bounded, the algorithm converges.
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Numerical Example
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Figure: Example of equilibrium user-provider association. The users are labeled
by numbers (1-20), and the providers are labeled by letters (a-e).
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Numerical Example
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Figure: Evolution of the primal-dual algorithm

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 4 September 15, 2014 61 / 64



Section 4.4: Chapter Summary
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Key Concepts

Theory
I Convex set
I Convex function
I Convex optimization
I Duality
I Dual-based sub gradient algorithm
I Primal-dual algorithm

Application
I Resource Allocation for Wireless Video Streaming
I Wireless Service Provider Pricing
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