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Focus of This Chapter

Key Focus: This chapter focuses on the user interactions in an
oligopoly market, where multiple self-interested individuals make
decisions independently, and the payoff of each individual depends
not only on his own decision, but also on the decisions of others.

Theoretic Approach: Game Theory
I Strategic Form Game
I Extensive Form Game
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Game Theory

Follow the discussions in
I “A course in game theory” by M. Osborne and A. Rubinstein, 1994;
I “A Primer in Game Theory” by R. Gibbons, 1992;
I “Game theory with applications to economics” by J. Friedman, 1986;
I “Game theory and applications” by L. Petrosjan and V. Mazalov, 2002.

Definition (Game Theory)

Game theory is a study of strategic decision making. Specifically, it is the
study of mathematical models of conflict and cooperation between
intelligent rational individuals.
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Section 6.1
Theory: Game Theory
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What is a game?

A game is a formal representation of a situation in which a number of
individuals interact with strategic interdependence.

I Each individual’s payoff depends not only on his own choice, but also
on the choices of other individuals;

I Each individual is rational (self-interested), whose goal is to choose the
actions that produce his most preferred outcome.

Key components of game

I Players: Who are involved in the game?
I Rules: What actions can players choose? How and when do they make

decisions? What information do players know about each other when
making decisions?

I Outcomes: What is the outcome of the game for each possible action
combinations chosen by players?

I Payoffs: What are the players’ preferences (i.e., utilities) over the
possible outcomes?
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Strategic Form Game

In strategic form games (also called normal form games), all players
make decisions simultaneously without knowing each other’s choices.

Definition (Strategic Form Game)

A strategic form game is a triplet 〈I, (Si )i∈I , (ui )i∈I〉 where

I = {1, 2, ..., I} is a finite set of players;

Si is a set of available actions (pure strategies) for player i ∈ I;
I S , ΠiSi denotes the set of all action profiles.

ui : S→ R is the payoff (utility) function of player i , which maps
every possible action profile in S to a real number.
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Strategic Form Game

Strictly Dominated Strategy
I A strictly dominated strategy refers to a strategy that is always worse

than all other strategies of the same player regardless of the choices of
other players’.

I A strictly dominated strategy can be safely removed from the player’s
strategy set without changing the game outcome.

Definition (Strictly Dominated Strategy)

A strategy si ∈ Si is strictly dominated for player i , if there exists some
s ′i ∈ Si such that

ui (si , s−i ) < ui (s
′
i , s−i ), ∀s−i ∈ S−i .
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Strategic Form Game

Example: Prisoner’s Dilemma Game
I Two players are arrested for a crime and placed in separate rooms. The

authorities try to extract a confession from them;
I Strategy of each player: SILENT, CONFESS;
I Payoff of players:

SILENT CONFESS
SILENT (−2,−2) (−5,−1)

CONFESS (−1,−5) (−4,−4)

F Each row denotes one action of player 1, each column denotes one
action of player 2.

I “SILENT” is a strictly dominated strategy for both players.
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Strategic Form Game

Best Response Correspondence
I A best response is the strategy which produces the most preferred

outcome for a player, taking all other players’ strategies as given.

Definition (Best Response Correspondence)

For each player i , the best response correspondence Bi (s−i ) : S−i → Si is
a mapping from the set S−i into Si such that

Bi (s−i ) = {si ∈ Si | ui (si , s−i ) ≥ ui (s
′
i , s−i ), ∀s ′i ∈ Si}.

I s−i = (sj ,∀j 6= i) is the vector of actions for all players except i ;
I S−i , Πj 6=iSj is the set of action profiles for all players except i .
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Strategic Form Game

Example: Stag Hunt Game
I Two hunters (players) decide to hunt together in a forest, and each of

them chooses one animal to hunt;
I Strategy of each player: STAG, HARE;
I Payoff of players:

STAG HARE
STAG (10, 10) (0, 2)
HARE (2, 0) (2, 2)

F Each row denotes one action of player 1, each column denotes one
action of player 2.

I No strictly dominated strategy in this game;
I If one player chooses the strategy“STAG”, the best strategy of the

other player is also “STAG”;
I If one player chooses the strategy “HARE”, the best strategy of the

other player is also “HARE”.
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Strategic Form Game

Nash Equilibrium
I A Nash equilibrium is such a strategy profile under which no player has

the incentive to change his strategy unilaterally.

Definition (Pure Strategy Nash Equilibrium)

A pure strategy Nash Equilibrium of a strategic form game 〈I, (Si )i∈I ,
(ui )i∈I〉 is a strategy profile s∗ ∈ S such that for each player i ∈ I, the
following condition holds

ui (s
∗
i , s
∗
−i ) ≥ ui (s

′
i , s
∗
−i ), ∀s ′i ∈ Si .
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Strategic Form Game

A strategy profile s∗ ∈ S is a pure strategy Nash Equilibrium if and
only if

s∗i ∈ Bi (s∗−i ), ∀i ∈ I.

In the example of Prisoner’s Dilemma Game, there is one pure
strategy Nash Equilibrium: (CONFESS, CONFESS);

In the example of Stag Hunt Game, there are two pure strategy Nash
Equilibriums: (STAG, STAG) and (HARE, HARE).
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Strategic Form Game

A game may have no pure strategy Nash Equilibrium.

Example: Matching Pennies Game
I Two players turn their pennies to “HEADS” or “TAILS” secretly and

simultaneously;
I Strategy of each player: HEADS, TAILS;
I Payoff of players:

HEADS TAILS
HEADS (1,−1) (−1, 1)
TAILS (−1, 1) (1,−1)

F Each row denotes one action of player 1, each column denotes one
action of player 2.

I No pure strategy Nash equilibrium in this game;
I A Natural Question: What kind of outcome will emerge as an

“equilibrium”? → Mixed Strategy Nash Equilibrium

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 15 / 69



Strategic Form Game

Mixed Strategy
I A mixed strategy is a probability distribution function (or probability

mass function) over all pure strategies of a player.
I For example, in the Matching Pennies Game, a mixed strategy of player

1 is σ1 = (0.4, 0.6), which means that player 1 picks “HEADS” with
probability 0.4 and “TAILS” with probability 0.6.

I Expected Payoff under Mixed Strategy

ui (σ) =
∑
s∈S

(
ΠI

j=1σj(sj)
)
· ui (s),

F σ = (σj , ∀j ∈ I) is a mixed strategy profile;
F s = (sj ,∀j ∈ I) is a pure strategy profile;
F σj(sj) is the probability of player j choosing pure strategy sj .
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Strategic Form Game

Mixed Strategy Nash Equilibrium
I A mixed strategy Nash equilibrium is such a mixed strategy profile

under which no player has the incentive to change his mixed strategy
unilaterally.

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy profile σ∗ is a mixed strategy Nash Equilibrium if for
every player i ∈ I,

ui (σ
∗
i ,σ

∗
−i ) ≥ ui (σ

′
i ,σ
∗
−i ), ∀σ′i ∈ Σi .

I In the example of Matching Pennies Game, there is one mixed strategy
Nash Equilibrium: σ∗ = (σ∗1 , σ

∗
2 ) with σ∗i = (0.5, 0.5), i = 1, 2.
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Strategic Form Game

“Support” of Mixed Strategy
I The “support” of a mixed strategy σi is the set of pure strategies

which are assigned positive probabilities. That is,
supp(σi ) , {si ∈ Si | σi (si ) > 0}.

Theorem

A mixed strategy profile σ∗ is a mixed strategy Nash Equilibrium if and
only if for every player i ∈ I, the following two conditions hold:

Every chosen action is equally good, that is, the expected payoff given
σ∗−i of every si ∈ supp(σi ) is the same;

Every non-chosen action is no better, that is, the expected payoff
given σ∗−i of every si /∈ supp(σi ) must be no larger than the expected
payoff of si ∈ supp(σi ).
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Strategic Form Game

Existence of Nash Equilibrium
I When or whether a strategic form game possesses a pure or mixed

strategy Nash equilibrium?

Theorem (Existence (Nash 1950))

Any finite strategic game, i.e., a game that has a finite number of players
and each player has a finite number of action choices, has at least one
mixed strategy Nash Equilibrium.
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Strategic Form Game

Theorem (Existence (Debreu-Fan-Glicksburg 1952))

The strategic form game 〈I, (Si )i∈I , (ui )i∈I〉 has a pure strategy Nash
equilibrium, if for each player i ∈ I the following condition hold:

Si is a non-empty, convex, and compact subset of a finite-dimensional
Euclidean space.

ui (s) is continuous in s and quasi-concave in si .

Compact: closed and bounded.

Quasi-concave: a function f (·) is quasi-concave if −f (·) is
quasi-convex

I http://en.wikipedia.org/wiki/Quasiconvex_function
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Extensive Form Game

In extensive form games (also called normal form games), players
make decisions sequentially.

Our focus is on the multi-stage game with observed actions where:
I All previous actions (called history) are observed, i.e., each player is

perfectly informed of all previous events;
I Some players may move simultaneously within the same stage.
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Extensive Form Game

Definition (Extensive Form Game)

An extensive form game consists of four main elements:

A set of players I = {1, 2, ..., I};
The history hk+1 = (s0, ..., sk) after each stage k , where
st = (sti ,∀i ∈ I) is the action profile at stage t;

Each pure strategy for player i is defined as a contingency plan for
every possible history after each stage;

Payoffs are defined on the outcome after the last stage.
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Extensive Form Game

Important Notations
I hk+1 = (s0, ..., sk): the history after stage k (i.e., at stage k + 1);
I Hk+1 = {hk+1}: the set of all possible histories after stage k;
I Si (hk+1): the set of actions available to player i under a particular

history hk at stage k + 1;
I Si (Hk+1) =

⋃
hk+1∈Hk+1 Si (hk+1): the set of actions available to player

i under all possible histories at stage k + 1;
I aki : Hk → Si (Hk): a mapping from every possible history in Hk (after

stage k − 1) to an available action of player i in Si (Hk);
I si = {aki }∞k=0: the pure strategy of player i .
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Extensive Form Game
Example: Market Entry Game

I Two players: Player 1 (Challenger) and Player 2 (Monopolist);
F Player 1 chooses to enter the market (I) or stay out (O) at stage I;
F Player 2, after observing the action of Player 1, chooses to

accommodate (A) or fight (F) at stage II;
I Payoffs are illustrated on the leaf nodes after stage II.

Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

OUT (O)

ACCORD (A)

FIGHT (F)

ACCORD (A)

FIGHT (F)

(2,1)

(-3,-1)

(0,2)

(0,2)
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Extensive Form Game

Example: Market Entry Game
I The strategy of Player 1: I, O;
I The strategy of Player 2: AA, AF, FA, FF;

F AA: Player 2 will select “A” under both histories h1 = {I} and {O};
F AF: Player 2 will select “A” (or “F”) under history h1 = {I} (or {O});
F FA: Player 2 will select “F” (or “A”) under history h1 = {I} (or {O});
F FF: Player 2 will select “F” under both histories h1 = {I} and {O};

I We can represent the extensive form game in the corresponding
strategic form:

AA AF FA FF
I (2, 1) (2, 1) (−3,−1) (−3,−1)
O (0, 2) (0, 2) (0, 2) (0, 2)

F Four Nash Equilibriums: (I, AA), (I, AF), (O, FA), and (O, FF)
F (O,FA) and (O,FF) are irreasonable, as they rely on the empty threat

that Player 2 will choose “FIGHT” when player 1 chooses “IN”.
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Extensive Form Game

How to characterize the reasonable Nash equilibrium in an extensive
form game? → Subgame Perfect Equilibrium

Definition (Subgame)

A subgame from history hk is a game on which:

I Histories: hK+1 = (hk , sk , ..., sK ).

I Strategies: si|hk is the restriction of si to histories in G (hk).

I Payoffs: ui (si , s−i |hk) is the payoff of player i after histories in G (hk).

A strategy profile s∗ is a subgame perfect equilibrium if for every
history hk , s∗

i |hk is an Nash equilibrium of the subgame G (hk).
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Extensive Form Game

Example: Market Entry Game
I Subgame from History h1 = {I}:

Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

ACCORD (A)

FIGHT (F)

(2,1)

(-3,-1) Irreasonable

I In this subgame, Player 2 will always choose “ACCORD” (as 1 is better
than -1), and hence we can eliminate “FIGHT”.
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Extensive Form Game

Example: Market Entry Game
I Subgame from History h1 = {O}:

Player 1
(Challenger)

Player 2
(Monopolist)

OUT (O)

ACCORD (A)

FIGHT (F)

(0,2)

(0,2)

I In this subgame, Player 2 is indifferent from choosing “ACCORD” or
“FIGHT”, hence we can not eliminate any action.
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Extensive Form Game

Example: Market Entry Game
I Player 1’s action at stage I:

F IN: his payoff is 2 (as Player 2 will choose “ACCORD”);
F OUT: his payoff is 0 (no matter what Player 2 will choose).

I Equilibrium: Player 1 chooses “IN”, Player 2 chooses “ACCORD”.

Player 1
(Challenger)

Player 2
(Monopolist)

IN (I)

OUT (O)

ACCORD (A)

ACCORD (A)

FIGHT (F)

(2,1) Equilibrium

(0,2)

(0,2)
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Section 6.2
Theory: Oligopoly
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Oligopoly

In this part, we consider three classical strategic form games to
formulate the interactions among multiple competitive entities
(Oligopoly):

I The Cournot Model
I The Bertrand Model
I The Hotelling Model

Our purpose in this part is to illustrate
I (a) Game Formulation: the translation of an informal problem

statement into a strategic form representation of a game;
I (b) Equilibrium Analysis: the analysis of Nash equilibrium when a

player can choose his strategy from a continuous set.
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The Cournot Model

The Cournot model describes interactions among firms that compete
on the amount of output they will produce, which they decide
independently of each other simultaneously.

Key features
I At least two firms producing homogeneous products;
I Firms do not cooperate, i.e., there is no collusion;
I Firms compete by setting production quantities simultaneously;
I The total output quantity affects the market price;
I The firms are economically rational and act strategically, seeking to

maximize profits given their competitors’ decisions.
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The Cournot Model

Example: The Cournot Game
I Two firms decide their respective output quantities simultaneously;
I The market price is a decreasing function of the total quantity.

Game Formulation
I The set of players is I = {1, 2},
I The strategy set available to each player i ∈ I is the set of all

nonnegative real numbers, i.e., qi ∈ [0,∞),
I The payoff received by each player i is a function of both players’

strategies, defined by

Πi (qi , q−i ) = qi · P(qi + q−i )− ci · qi

F The first term denotes the player i ’s revenue from selling qi units of
products at a market-clearing price P(qi + q−i );

F The second term denotes the player i ’s production cost.
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The Cournot Model

Consider a linear cost: P(qi + q−i ) = a− (qi + q−i )

Equilibrium Analysis
I Given player 2’s strategy q2, the best response of player 1 is:

q∗1 = B1(q2) =
a− q2 − c1

2
,

I Given player 1’s strategy q1, the best response of player 2 is:

q∗2 = B2(q1) =
a− q1 − c2

2
,

I A strategy profile (q∗1 , q
∗
2 ) is an Nash equilibrium if every player’s

strategy is the best response to others’ strategies:

q∗1 = B1(q∗2 ), and q∗2 = B2(q∗1 )

I Nash Equilibrium:

q∗1 =
a + c1 + c2

3
− c1, q∗2 =

a + c1 + c2
3

− c2
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The Cournot Model

Illustration of Equilibrium
I Geometrically, the Nash equilibrium is the intersection of both players’

best response curves.

0 q1

q2

a− c1

1
2(a− c2)

a− c21
2(a− c1)

B1(q2)

B2(q1)

Nash Equilibrium
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The Bertrand Model

The Bertrand model describes interactions among firms (sellers) who
set prices independently and simultaneously, under which the
customers (buyers) choose quantities accordingly.

Key features
I At least two firms producing homogeneous products;
I Firms do not cooperate, i.e., there is no collusion;
I Firms compete by setting prices simultaneously;
I Consumers buy products from a firm with a lower cost (price).

F If firms charge the same price, consumers randomly select among them.

I The firms are economically rational and act strategically, seeking to
maximize profits given their competitors’ decisions.
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The Bertrand Model

Example: The Bertrand Game
I Two firms decide their respective prices simultaneously;
I The consumers buy products from a firm with a lower price.

Game Formulation
I The set of players is I = {1, 2},
I The strategy set available to each player i ∈ I is the set of all

nonnegative real numbers, i.e., pi ∈ [0,∞),
I The payoff received by each player i is a function of both players’

strategies, defined by

Πi (pi , p−i ) = (pi − ci ) · Di (p1, p2)

F ci is the unit producing cost;
F Di (p1, p2) is the consumers’ demand to player i :

(i) Di (p1, p2) = 0 if pi > p−i ; (ii) Di (p1, p2) = D(pi ) if pi < p−i ;
(iii) Di (p1, p2) = D(pi )/2 if pi = p−i .
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The Bertrand Model

Equilibrium Analysis
I Given player 2’s strategy p2, the best response of player 1 is to select a

price p1 slightly lower than p2 under the constraint that p1 ≥ c1:

p∗1 = max{c1, p2 − ε}

I Given player 1’s strategy p1, the best response of player 2 is to select a
price p2 slightly lower than p1 under the constraint that p2 ≥ c2:

p∗2 = max{c2, p1 − ε}

I Both players will gradually decrease their prices, until one player gets to
his producing cost. Therefore, the Nash equilibrium is

p∗1 = [c2]−, p∗2 ∈ [c2,∞) if c1 < c2

p∗1 ∈ [c1,∞), p∗2 = [c1]− if c1 > c2

p∗1 = p∗2 = c if c1 = c2 = c
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The Bertrand Model

Illustration of Equilibrium
I Geometrically, the Nash equilibrium is the intersection of both players’

best response curves.

0 p1

p2

c1

c2

B1(p2)

B2(p1)

Nash Equilibrium
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The Hotelling Model

The Hotelling model studies the effect of locations on the price
competition among two or more firms.

Key features
I Two firms at different locations sell the homogeneous good;
I The customers are uniformly distributed between two firms.
I Customers incur a transportation cost as well as a purchasing cost.
I The firms are economically rational and act strategically, seeking to

maximize profits given their competitors’ decisions.
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The Hotelling Model

Example: The Hotelling Game
I Two firms at different locations decide their respective prices

simultaneously;
I The consumers buy products from a firm with a lower total cost,

including both the transportation cost and the purchasing cost.

Game Formulation
I The set of players is I = {1, 2}, each locating at one end of the

interval [0, 1];
I The strategy set available to each player i ∈ I is the set of all

nonnegative real numbers, i.e., pi ∈ [0,∞);
I The payoff received by each player i is a function of both players’

strategies, defined by

Πi (pi , p−i ) = (pi − ci ) · Di (p1, p2)

F ci is the unit producing cost;
F Di (p1, p2) is the ratio of consumers coming to player i .
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The Hotelling Model

Consumer Demand: Di (p1, p2)
I Under price profile (p1, p2), the total cost of a consumer at location

x ∈ [0, 1] buying products from player 1 or 2 is

C1(x) = p1 + w · x , and C2(x) = p1 + w · (1− x)

I Under (p1, p2), two players receive the following consumer demand:

D1(p1, p2) =
p2 − p1 + w

2w
, D2(p1, p2) =

p1 − p2 + w

2w
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The Hotelling Model

Equilibrium Analysis
I Given player 2’s strategy p2, the best response of player 1 is

p∗1 = B1(p2) =
p2 + w + c1

2

I Given player 1’s strategy p1, the best response of player 2 is

p∗2 = B2(p1) =
p1 + w + c2

2

I Nash Equilibrium:

p∗1 =
3w + c1 + c2

3
+

c1
3
, p∗2 =

3w + c1 + c2
3

+
c2
3
.
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The Hotelling Model

Illustration of Equilibrium
I Geometrically, the Nash equilibrium is the intersection of both players’

best response curves.

0 p1

p2

w+c1
2

w+c2
2

B1(p2)

B2(p1)

Nash Equilibrium
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Section 6.3:
Wireless Service Provider Competition Revisited
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Network Model

Provider 1

Provider 2

Provider 3

A set J = {1, . . . , J} of service providers
I Provider j has a supply Qj of resource (e.g., channel, time, power)
I Providers operate on orthogonal spectrum bands

A set I = {1, . . . , I} of users
I User i can obtain resources from multiple providers: q i = (qij ,∀j ∈ J )

I User i ’s utility function is ui
(∑J

j=1 qijcij
)

: increasing and strictly
concave
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An Example: TDMA

Each provider j has a total spectrum band of Wj .

qij : the fraction of time that user i transmits on provider j ’s band
I Constraints:

∑
i qij ≤ 1, for all j ∈ J .

cij : the data rate achieved by user i on provider j ’s band

cij = Wj log(1 +
Pi |hij |2

σ2ijWj
)

I Pi : user i ’s peak transmission power.
I hij : the channel gain between user i and network j .
I σ2

ij : the Gaussian noise variance for the channel.

ui

(∑J
j=1 qijcij

)
: user i ’ utility of the total achieved data rate
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Two-Stage Game

Stage I: each provider j ∈ J announces a unit price pj
I Each provider i wants to maximize his revenue
I Denote p = (pj ,∀j ∈ J ) as the price vectors of all providers.

Stage II: each user i ∈ I chooses a demand vector q i = (qij , ∀j ∈ J )
I Each user i wants to maximize his payoff (utility minus payment)
I Denote q = (q i ,∀i ∈ I) as the demand vector of all users.

Analysis based on backward induction
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Goal: Derive the SPNE

A price demand tuple (p∗,q∗(p∗)) is a SPNE if no player has an
incentive to deviate unilaterally at any stage of the game.

I Each user i maximizes its payoff by choosing the optimal demand
q∗i (p∗), given prices p∗.

I Each provider j maximizes its revenue by choosing price p∗j , given other
providers’ prices p∗−j = (p∗k ,∀k 6= j) and the user demands q∗(p∗).
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Stage II: User’s Demand Optimization

Each user i ∈ I solves a user payoff maximization (UPM) problem:

UPM : max
q i≥0

ui

 J∑
j=1

qijcij

− J∑
j=1

pjqij

 .

Problem UPM may have more than one optimization solution q∗i
I Since it is not strictly concave maximization problem in q∗i

Problem UPM has a unique solution of the effective resource xi

Lemma (6.16)

I For each user i ∈ I, there exists a unique nonnegative value x∗i , such that∑
j∈J cijq

∗
ij = x∗i for every maximizer q∗i of the UPM problem.

I For any provider j such that q∗ij > 0, pj/cij = mink∈J pk/cik .

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 50 / 69



Stage II: User’s Demand Optimization

Each user i ∈ I solves a user payoff maximization (UPM) problem:

UPM : max
q i≥0

ui

 J∑
j=1

qijcij

− J∑
j=1

pjqij

 .

Problem UPM may have more than one optimization solution q∗i
I Since it is not strictly concave maximization problem in q∗i

Problem UPM has a unique solution of the effective resource xi

Lemma (6.16)

I For each user i ∈ I, there exists a unique nonnegative value x∗i , such that∑
j∈J cijq

∗
ij = x∗i for every maximizer q∗i of the UPM problem.

I For any provider j such that q∗ij > 0, pj/cij = mink∈J pk/cik .

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 50 / 69



Stage II: User’s Demand Optimization

Each user i ∈ I solves a user payoff maximization (UPM) problem:

UPM : max
q i≥0

ui

 J∑
j=1

qijcij

− J∑
j=1

pjqij

 .

Problem UPM may have more than one optimization solution q∗i
I Since it is not strictly concave maximization problem in q∗i

Problem UPM has a unique solution of the effective resource xi

Lemma (6.16)

I For each user i ∈ I, there exists a unique nonnegative value x∗i , such that∑
j∈J cijq

∗
ij = x∗i for every maximizer q∗i of the UPM problem.

I For any provider j such that q∗ij > 0, pj/cij = mink∈J pk/cik .

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 50 / 69



Decided vs. Undecided Users

Definition (Preference set)

For any price vector p, user i ’s preference set is

Ji (p) =

{
j ∈ J :

pj
cij

= min
k∈J

pk
cik

}
.

A decided user has a singleton preference set.

An undecided user has a preference set that includes more than one
provider.

One can use a bipartite graph representation (BGR) to uniquely
determine the demands of undecided users.

This will lead to all users’ optimal demand q∗(p) = (q∗i (p), ∀i ∈ I) in
Stage II.
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Stage I: Provider’s Revenue Optimization

Each provider j ∈ J solves a provider revenue maximization (PRM)
problem

PRM : max
pj≥0

pj ·min

(
Qj ,
∑
i∈I

q∗ij(pj , p−j)

)

Solving the PRM problem requires the consideration of other
providers’ prices p−j .
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Benchmark: Social Welfare Optimization (Ch. 4)

SWO: Social Welfare Optimization Problem

maximize
∑
i∈I

ui (xi )

subject to
∑
j∈J

qijcij = xi , ∀i ∈ I,∑
i∈I

qij = Qj , ∀j ∈ J ,

variables qij , xi ≥ 0, ∀i ∈ I, j ∈ J .
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Stage I: Provider’s Revenue Optimization

Theorem

Under proper technical assumptions, the unique socially optimal demand
vector q∗ and the associated Lagrangian multiplier vector p∗ of the SWO
problem constitute the unique SPNE of the provider competition game.
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Optimization, Game, and Algorithm

Social Welfare Optimization

Section 4.3.2
maximizing vector q∗

Lagrange multipliers p∗

(q∗,p∗)

Provider Competition Game

Section 6.3.1

equilibrium price p∗
equilibrium user demand q∗

(q∗,p∗)

Primal-Dual Algorithm

Section 4.3.3
limt→∞(q(t),p(t)) = (q∗,p∗)

(q∗,p∗)

Figure: Relationship among different concepts
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Section 6.4:
Competition with Spectrum Leasing
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Network Model

 
 
 

Secondary users (transmitter-receiver pairs) 

Spectrum 
owner  

Operator i Operator j 

Investment 
(leasing bandwidth)

Pricing 
(selling bandwidth) 

Spectrum 
owner 
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Three-Stage Multi-leader-follower Game

Stage I: Leasing Game
Leasing Bandwidth B1 and B2
(with unit costs C1 and C2)

Stage II: Pricing Game
Pricing π1 and π2

Stage III 
User k Chooses One 

Operator i and Demand wki

Operators
(leaders)

Users
(followers)

Backw
ard Induction
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Stage IIII: Users’ Bandwidth Demands

User k ’s payoff of choosing operator i = 1, 2

uk(πi ,wki ) = wki ln

(
Pmax
i hi
n0wki

)
− πiwki

I High SNR approximation of OFDMA system
I Optimal demand: w∗ki (πi ) = arg maxwki≥0 uk(πi ,wki ) = gke

−(1+πi )

I Optimal payoff: uk(πi ,w
∗
ki (πi ))

User k prefers the “better” operator: i∗ = arg maxi=1,2 uk(πi ,w
∗
ki (πi ))

Users demands may not be satisfied due to limited resource
I Difference between preferred demand and realized demand
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Stages II: Pricing Game

Players: two operators

Strategies: πi ≥ 0, i = 1, 2

Payoffs: profit Ri for operator i = 1, 2:

Ri (Bi ,Bj , πi , πj) = πiQi (Bi ,Bj , πi , πj)− BiCi
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Stage II: Pricing Equilibrium

Symmetric equilibrium: π∗1 = π∗2.

Threshold structure:
I Unique positive equilibrium exists B1 + B2 ≤ Ge−2.

 

( 1)M

( 3)M

( )L

( 2)M

( )H

0

2Ge−

1Ge−

iB

jB

2Ge− 1Ge−

 (L) : Unique nonzero equilibrium 

(M1)‐(M3) : No equilibrium 

(H) : Unique zero equilibrium 
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Stage I: Leasing Game

Players: two operators

Strategies: Bi ∈ [0,∞), i = 1, 2, and B1 + B2 ≤ Ge−2.

Payoffs: profit Ri for operator i = 1, 2:

Ri (Bi ,Bj) = Bi

(
ln

(
G

Bi + Bj

)
− 1− Ci

)

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 62 / 69



Stage I: Leasing Equilibrium

Linear in wireless characteristics G =
∑

i gi ;

Threshold structure:
I Low costs: infinitely many equilibria
I High comparable costs: unique equilibrium
I High incomparable costs: unique monopoly equlibrium

 
1j iC C= +

( )L

1

10 iC

jC

( )HC

( )HI

( ')HI

1j iC C= −

 (L) : Infinitely many equilibria

(HC) : Unique equilibrium 

(HI)‐(HI’) : Unique equilibrium 
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Equilibrium Summary (Assuming Ci ≤ Cj)

Costs
LOW HC HI

Ci + Cj ≤ 1 Ci + Cj > 1, Cj > 1 + Ci

Cj − Ci ≤ 1

equilibria Infinite Unique Unique

(B∗i ,B
∗
j )

(ρGe−2, (1− ρ)Ge−2),

(
(1+Cj−Ci )G

2e
Ci+Cj+3

2

,
(1+Ci−Cj )G

2e
Ci+Cj+3

2

)
(Ge−(2+Ci ), 0)

ρ ∈ [Cj , (1− Ci )]

(π∗i , π
∗
j ) (1, 1)

(
Ci+Cj+1

2 ,
Ci+Cj+1

2

)
(1 + Ci ,N/A)

User SNR e2 e
Ci+Cj+3

2 e2+Ci

User Payoff gke
−2 gke

−
(

Ci+Cj+3

2

)
gke
−(2+Ci )

Users achieve the same SNR

User k ’s payoff is linear in gk
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Robustness of Results

To obtain closed form solutions, we have assumed
I All users achieve high SNR

Previous observations still hold in the general case

I Users operate in general SNR regime: rki (wki ) = wki ln
(

1 +
Pmax
k hk
n0wki

)

Huang & Gao ( c©NCEL) Wireless Network Pricing: Chapter 6 October 21, 2014 65 / 69



Impact of Duopoly Competition on Operators
Benchmark: Coordinated Case

I Operators cooperate in investment and pricing to maximize total profit

Define

Efficiency Ratio =
Total Profit in Competition Case

Total Profit in Coordinated Case
Price of Anarchy = minCi ,Cj

Efficiency Ratio= 0.75.
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Section 6.5: Chapter Summary
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Key Concepts

Theory: Game Theory
I Dominant Strategy
I Pure and Mixed Strategy Nash Equilibrium
I Subgame Perfect Nash Equilibrium

Theory: Oligopoly
I Cournot competition
I Bertrand competition
I Hotelling competition

Application: Wireless Network Competition Revisited

Application: Competition with Spectrum Leasing
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