Wireless Network Pricing Chapter 6: Oligopoly Pricing

Jianwei Huang & Lin Gao

Network Communications and Economics Lab (NCEL)
Information Engineering Department
The Chinese University of Hong Kong

The Book

- E-Book freely downloadable from NCEL website: http: //ncel.ie.cuhk.edu.hk/content/wireless-network-pricing
- Physical book available for purchase from Morgan & Claypool (http://goo.gl/JFGlai) and Amazon (http://goo.gl/JQKaEq)

Chapter 6: Oligopoly Pricing

Focus of This Chapter

- Key Focus: This chapter focuses on the user interactions in an oligopoly market, where multiple self-interested individuals make decisions independently, and the payoff of each individual depends not only on his own decision, but also on the decisions of others.
- Theoretic Approach: Game Theory
 - Strategic Form Game
 - Extensive Form Game

Game Theory

- Follow the discussions in
 - "A course in game theory" by M. Osborne and A. Rubinstein, 1994;
 - "A Primer in Game Theory" by R. Gibbons, 1992;
 - "Game theory with applications to economics" by J. Friedman, 1986;
 - "Game theory and applications" by L. Petrosjan and V. Mazalov, 2002.

Definition (Game Theory)

Game theory is a study of strategic decision making. Specifically, it is the study of *mathematical models of conflict and cooperation* between intelligent rational individuals.

Section 6.1 Theory: Game Theory

What is a game?

- A game is a formal representation of a situation in which a number of individuals interact with strategic interdependence.
 - Each individual's payoff depends not only on his own choice, but also on the choices of other individuals;
 - ► Each individual is rational (self-interested), whose goal is to choose the actions that produce his most preferred outcome.
- Key components of game
 - ▶ Players: Who are involved in the game?
 - Rules: What actions can players choose? How and when do they make decisions? What information do players know about each other when making decisions?
 - Outcomes: What is the outcome of the game for each possible action combinations chosen by players?
 - ▶ Payoffs: What are the players' preferences (i.e., utilities) over the possible outcomes?

 In strategic form games (also called normal form games), all players make decisions simultaneously without knowing each other's choices.

Definition (Strategic Form Game)

A strategic form game is a triplet $\langle \mathcal{I}, (\mathcal{S}_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ where

- $\mathcal{I} = \{1, 2, ..., I\}$ is a finite set of players;
- S_i is a set of available actions (pure strategies) for player $i \in \mathcal{I}$; • $\mathbb{S} \triangleq \Pi_i S_i$ denotes the set of all action profiles.
- $u_i : \mathbb{S} \to \mathbb{R}$ is the payoff (utility) function of player i, which maps every possible action profile in \mathbb{S} to a real number.

Strictly Dominated Strategy

- A strictly dominated strategy refers to a strategy that is always worse than all other strategies of the same player regardless of the choices of other players'.
- ► A strictly dominated strategy can be safely removed from the player's strategy set without changing the game outcome.

Definition (Strictly Dominated Strategy)

A strategy $s_i \in \mathcal{S}_i$ is strictly dominated for player i, if there exists some $s_i' \in \mathcal{S}_i$ such that

$$u_i(s_i, \mathbf{s}_{-i}) < u_i(s_i', \mathbf{s}_{-i}), \quad \forall \mathbf{s}_{-i} \in \mathbb{S}_{-i}.$$

- Example: Prisoner's Dilemma Game
 - ► Two players are arrested for a crime and placed in separate rooms. The authorities try to extract a confession from them;
 - Strategy of each player: SILENT, CONFESS;
 - Payoff of players:

$$\begin{array}{c|c} \text{SILENT} & \text{CONFESS} \\ \text{SILENT} & (-2,-2) & (-5,-1) \\ \text{CONFESS} & (-1,-5) & (-4,-4) \end{array}$$

- * Each row denotes one action of player 1, each column denotes one action of player 2.
- "SILENT" is a strictly dominated strategy for both players.

- Best Response Correspondence
 - ▶ A best response is the strategy which produces the most preferred outcome for a player, taking all other players' strategies as given.

Definition (Best Response Correspondence)

For each player i, the best response correspondence $B_i(\mathbf{s}_{-i}): \mathbb{S}_{-i} \to \mathcal{S}_i$ is a mapping from the set \mathbb{S}_{-i} into \mathcal{S}_i such that

$$B_i(\mathbf{s}_{-i}) = \{ \mathbf{s}_i \in \mathcal{S}_i \mid u_i(\mathbf{s}_i, \mathbf{s}_{-i}) \geq u_i(\mathbf{s}_i', \mathbf{s}_{-i}), \forall \mathbf{s}_i' \in \mathcal{S}_i \}.$$

- ▶ $\mathbf{s}_{-i} = (\mathbf{s}_i, \forall j \neq i)$ is the vector of actions for all players except i;
- ▶ $\mathbb{S}_{-i} \triangleq \Pi_{j\neq i} S_j$ is the set of action profiles for all players except *i*.

- Example: Stag Hunt Game
 - ► Two hunters (players) decide to hunt together in a forest, and each of them chooses one animal to hunt;
 - Strategy of each player: STAG, HARE;
 - Payoff of players:

	STAG	HARE
STAG	(10, 10)	(0,2)
HARE	(2,0)	(2,2)

- * Each row denotes one action of player 1, each column denotes one action of player 2.
- No strictly dominated strategy in this game;
- ▶ If one player chooses the strategy "STAG", the best strategy of the other player is also "STAG";
- ▶ If one player chooses the strategy "HARE", the best strategy of the other player is also "HARE".

Nash Equilibrium

► A Nash equilibrium is such a strategy profile under which no player has the incentive to change his strategy unilaterally.

Definition (Pure Strategy Nash Equilibrium)

A pure strategy Nash Equilibrium of a strategic form game $\langle \mathcal{I}, (\mathcal{S}_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ is a strategy profile $s^* \in \mathbb{S}$ such that for each player $i \in \mathcal{I}$, the following condition holds

$$u_i(s_i^*, \mathbf{s}_{-i}^*) \geq u_i(s_i', \mathbf{s}_{-i}^*), \quad \forall s_i' \in \mathcal{S}_i.$$

ullet A strategy profile $oldsymbol{s}^* \in \mathbb{S}$ is a pure strategy Nash Equilibrium if and only if

$$s_i^* \in B_i(\boldsymbol{s}_{-i}^*), \quad \forall i \in \mathcal{I}.$$

- In the example of Prisoner's Dilemma Game, there is one pure strategy Nash Equilibrium: (CONFESS, CONFESS);
- In the example of Stag Hunt Game, there are two pure strategy Nash Equilibriums: (STAG, STAG) and (HARE, HARE).

- A game may have no pure strategy Nash Equilibrium.
- Example: Matching Pennies Game
 - Two players turn their pennies to "HEADS" or "TAILS" secretly and simultaneously;
 - Strategy of each player: HEADS, TAILS;
 - Payoff of players:

	HEADS	TAILS
HEADS	(1,-1)	(-1, 1)
TAILS	(-1,1)	(1, -1)

- ★ Each row denotes one action of player 1, each column denotes one action of player 2.
- ▶ No pure strategy Nash equilibrium in this game;
- ► A Natural Question: What kind of outcome will emerge as an "equilibrium"? → Mixed Strategy Nash Equilibrium

Mixed Strategy

- ► A mixed strategy is a probability distribution function (or probability mass function) over all pure strategies of a player.
- For example, in the Matching Pennies Game, a mixed strategy of player 1 is $\sigma_1 = (0.4, 0.6)$, which means that player 1 picks "HEADS" with probability 0.4 and "TAILS" with probability 0.6.
- Expected Payoff under Mixed Strategy

$$u_i(\boldsymbol{\sigma}) = \sum_{\boldsymbol{s} \in S} (\Pi_{j=1}^I \sigma_j(s_j)) \cdot u_i(\boldsymbol{s}),$$

- ★ $\sigma = (\sigma_i, \forall j \in \mathcal{I})$ is a mixed strategy profile;
- ★ $s = (s_i, \forall j \in \mathcal{I})$ is a pure strategy profile;
- ★ $\sigma_i(s_i)$ is the probability of player j choosing pure strategy s_i .

- Mixed Strategy Nash Equilibrium
 - ► A mixed strategy Nash equilibrium is such a mixed strategy profile under which no player has the incentive to change his mixed strategy unilaterally.

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy profile σ^* is a mixed strategy Nash Equilibrium if for every player $i \in \mathcal{I}$,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \geq u_i(\sigma_i', \sigma_{-i}^*), \quad \forall \sigma_i' \in \Sigma_i.$$

▶ In the example of Matching Pennies Game, there is one mixed strategy Nash Equilibrium: $\sigma^* = (\sigma_1^*, \sigma_2^*)$ with $\sigma_i^* = (0.5, 0.5)$, i = 1, 2.

- "Support" of Mixed Strategy
 - ► The "support" of a mixed strategy σ_i is the set of pure strategies which are assigned positive probabilities. That is, $\operatorname{supp}(\sigma_i) \triangleq \{s_i \in \mathcal{S}_i \mid \sigma_i(s_i) > 0\}.$

Theorem

A mixed strategy profile σ^* is a mixed strategy Nash Equilibrium if and only if for every player $i \in \mathcal{I}$, the following two conditions hold:

- Every chosen action is equally good, that is, the expected payoff given σ_{-i}^* of every $s_i \in \text{supp}(\sigma_i)$ is the same;
- Every non-chosen action is no better, that is, the expected payoff given σ_{-i}^* of every $s_i \notin \text{supp}(\sigma_i)$ must be no larger than the expected payoff of $s_i \in \text{supp}(\sigma_i)$.

- Existence of Nash Equilibrium
 - When or whether a strategic form game possesses a pure or mixed strategy Nash equilibrium?

Theorem (Existence (Nash 1950))

Any finite strategic game, i.e., a game that has a finite number of players and each player has a finite number of action choices, has at least one mixed strategy Nash Equilibrium.

Theorem (Existence (Debreu-Fan-Glicksburg 1952))

The strategic form game $\langle \mathcal{I}, (\mathcal{S}_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}} \rangle$ has a pure strategy Nash equilibrium, if for each player $i \in \mathcal{I}$ the following condition hold:

- S_i is a non-empty, convex, and compact subset of a finite-dimensional Euclidean space.
- $u_i(s)$ is continuous in s and quasi-concave in s_i .
- Compact: closed and bounded.
- Quasi-concave: a function $f(\cdot)$ is quasi-concave if $-f(\cdot)$ is quasi-convex
 - ▶ http://en.wikipedia.org/wiki/Quasiconvex_function

- In extensive form games (also called normal form games), players make decisions sequentially.
- Our focus is on the multi-stage game with observed actions where:
 - All previous actions (called history) are observed, i.e., each player is perfectly informed of all previous events;
 - ▶ Some players may move simultaneously within the same stage.

Definition (Extensive Form Game)

An extensive form game consists of four main elements:

- A set of players $\mathcal{I} = \{1, 2, ..., I\};$
- The history $\mathbf{h}^{k+1} = (\mathbf{s}^0, ..., \mathbf{s}^k)$ after each stage k, where $\mathbf{s}^t = (\mathbf{s}_i^t, \forall i \in \mathcal{I})$ is the action profile at stage t;
- Each pure strategy for player i is defined as a contingency plan for every possible history after each stage;
- Payoffs are defined on the outcome after the last stage.

- Important Notations
 - ▶ $\mathbf{h}^{k+1} = (\mathbf{s}^0, ..., \mathbf{s}^k)$: the history after stage k (i.e., at stage k+1);
 - $\mathcal{H}^{k+1} = \{h^{k+1}\}$: the set of all possible histories after stage k;
 - $S_i(\mathbf{h}^{k+1})$: the set of actions available to player i under a particular history \mathbf{h}^k at stage k+1;
 - $\mathcal{S}_i(\mathcal{H}^{k+1}) = \bigcup_{\boldsymbol{h}^{k+1} \in \mathcal{H}^{k+1}} \mathcal{S}_i(\boldsymbol{h}^{k+1})$: the set of actions available to player i under all possible histories at stage k+1;
 - ▶ $a_i^k : \mathcal{H}^k \to \mathcal{S}_i(\mathcal{H}^k)$: a mapping from every possible history in \mathcal{H}^k (after stage k-1) to an available action of player i in $\mathcal{S}_i(\mathcal{H}^k)$;
 - $s_i = \{a_i^k\}_{k=0}^{\infty}$: the pure strategy of player i.

- Example: Market Entry Game
 - ► Two players: Player 1 (Challenger) and Player 2 (Monopolist);
 - ★ Player 1 chooses to enter the market (I) or stay out (O) at stage I;
 - Player 2, after observing the action of Player 1, chooses to accommodate (A) or fight (F) at stage II;
 - ▶ Payoffs are illustrated on the leaf nodes after stage II.

- Example: Market Entry Game
 - ► The strategy of Player 1: I, O;
 - ► The strategy of Player 2: AA, AF, FA, FF;
 - **★** AA: Player 2 will select "A" under both histories $h^1 = \{I\}$ and $\{O\}$;
 - * AF: Player 2 will select "A" (or "F") under history $h^1 = \{1\}$ (or $\{0\}$);
 - ***** FA: Player 2 will select "F" (or "A") under history $h^1 = \{I\}$ (or $\{O\}$);
 - ***** FF: Player 2 will select "F" under both histories $\mathbf{h}^1 = \{I\}$ and $\{O\}$;
 - We can represent the extensive form game in the corresponding strategic form:

	AA	AF	FA	FF
ı	(2,1)	(2,1)	(-3, -1)	(-3, -1)
0	(0,2)	(0,2)	(0,2)	(0,2)

- ★ Four Nash Equilibriums: (I, AA), (I, AF), (O, FA), and (O, FF)
- * (O,FA) and (O,FF) are irreasonable, as they rely on the empty threat that Player 2 will choose "FIGHT" when player 1 chooses "IN".

 How to characterize the reasonable Nash equilibrium in an extensive form game? → Subgame Perfect Equilibrium

Definition (Subgame)

A subgame from history \mathbf{h}^k is a game on which:

- $\vdash \mathsf{Histories}: \; \boldsymbol{h}^{K+1} = (\boldsymbol{h}^k, \boldsymbol{s}^k, ..., \boldsymbol{s}^K).$
- Strategies: $s_{i|\mathbf{h}^k}$ is the restriction of s_i to histories in $G(\mathbf{h}^k)$.
- Payoffs: $u_i(s_i, s_{-i} | h^k)$ is the payoff of player *i* after histories in $G(h^k)$.
- A strategy profile s^* is a subgame perfect equilibrium if for every history h^k , $s^*_{i|h^k}$ is an Nash equilibrium of the subgame $G(h^k)$.

- Example: Market Entry Game
 - Subgame from History $h^1 = \{1\}$:

▶ In this subgame, Player 2 will always choose "ACCORD" (as 1 is better than -1), and hence we can eliminate "FIGHT".

- Example: Market Entry Game
 - Subgame from History $h^1 = \{O\}$:

► In this subgame, Player 2 is indifferent from choosing "ACCORD" or "FIGHT", hence we can not eliminate any action.

- Example: Market Entry Game
 - ▶ Player 1's action at stage I:
 - **★** IN: his payoff is 2 (as Player 2 will choose "ACCORD");
 - ★ OUT: his payoff is 0 (no matter what Player 2 will choose).
 - ► Equilibrium: Player 1 chooses "IN", Player 2 chooses "ACCORD".

Section 6.2 Theory: Oligopoly

Oligopoly

- In this part, we consider three classical strategic form games to formulate the interactions among multiple competitive entities (Oligopoly):
 - ► The Cournot Model
 - ► The Bertrand Model
 - ► The Hotelling Model
- Our purpose in this part is to illustrate
 - ▶ (a) Game Formulation: the translation of an informal problem statement into a strategic form representation of a game;
 - ▶ (b) Equilibrium Analysis: the analysis of Nash equilibrium when a player can choose his strategy from a continuous set.

 The Cournot model describes interactions among firms that compete on the amount of output they will produce, which they decide independently of each other simultaneously.

Key features

- At least two firms producing homogeneous products;
- Firms do not cooperate, i.e., there is no collusion;
- Firms compete by setting production quantities simultaneously;
- ▶ The total output quantity affects the market price;
- ► The firms are economically rational and act strategically, seeking to maximize profits given their competitors' decisions.

- Example: The Cournot Game
 - ► Two firms decide their respective output quantities simultaneously;
 - ► The market price is a decreasing function of the total quantity.
- Game Formulation
 - ▶ The set of players is $\mathcal{I} = \{1, 2\}$,
 - ▶ The strategy set available to each player $i \in \mathcal{I}$ is the set of all nonnegative real numbers, i.e., $q_i \in [0, \infty)$,
 - ► The payoff received by each player i is a function of both players' strategies, defined by

$$\Pi_i(q_i, q_{-i}) = q_i \cdot P(q_i + q_{-i}) - c_i \cdot q_i$$

- * The first term denotes the player i's revenue from selling q_i units of products at a market-clearing price $P(q_i + q_{-i})$;
- ★ The second term denotes the player i's production cost.

- Consider a linear cost: $P(q_i + q_{-i}) = a (q_i + q_{-i})$
- Equilibrium Analysis
 - Given player 2's strategy q_2 , the best response of player 1 is:

$$q_1^* = B_1(q_2) = \frac{a - q_2 - c_1}{2},$$

▶ Given player 1's strategy q_1 , the best response of player 2 is:

$$q_2^* = B_2(q_1) = \frac{a - q_1 - c_2}{2},$$

A strategy profile (q_1^*, q_2^*) is an Nash equilibrium if every player's strategy is the best response to others' strategies:

$$q_1^* = B_1(q_2^*), \text{ and } q_2^* = B_2(q_1^*)$$

Nash Equilibrium:

$$q_1^* = rac{a+c_1+c_2}{3} - c_1, \;\;\; q_2^* = rac{a+c_1+c_2}{3} - c_2$$

- Illustration of Equilibrium
 - Geometrically, the Nash equilibrium is the intersection of both players' best response curves.

The Bertrand Model

 The Bertrand model describes interactions among firms (sellers) who set prices independently and simultaneously, under which the customers (buyers) choose quantities accordingly.

Key features

- At least two firms producing homogeneous products;
- Firms do not cooperate, i.e., there is no collusion;
- Firms compete by setting prices simultaneously;
- Consumers buy products from a firm with a lower cost (price).
 - **★** If firms charge the same price, consumers randomly select among them.
- ► The firms are economically rational and act strategically, seeking to maximize profits given their competitors' decisions.

The Bertrand Model

- Example: The Bertrand Game
 - ► Two firms decide their respective prices simultaneously;
 - ▶ The consumers buy products from a firm with a lower price.
- Game Formulation
 - ▶ The set of players is $\mathcal{I} = \{1, 2\}$,
 - ▶ The strategy set available to each player $i \in \mathcal{I}$ is the set of all nonnegative real numbers, i.e., $p_i \in [0, \infty)$,
 - ► The payoff received by each player i is a function of both players' strategies, defined by

$$\Pi_i(p_i, p_{-i}) = (p_i - c_i) \cdot D_i(p_1, p_2)$$

- ★ c_i is the unit producing cost;
- ★ $D_i(p_1, p_2)$ is the consumers' demand to player i:
 - (i) $D_i(p_1, p_2) = 0$ if $p_i > p_{-i}$; (ii) $D_i(p_1, p_2) = D(p_i)$ if $p_i < p_{-i}$;
 - (iii) $D_i(p_1, p_2) = D(p_i)/2$ if $p_i = p_{-i}$.

The Bertrand Model

Equilibrium Analysis

▶ Given player 2's strategy p_2 , the best response of player 1 is to select a price p_1 slightly lower than p_2 under the constraint that $p_1 \ge c_1$:

$$p_1^* = \max\{c_1, p_2 - \epsilon\}$$

▶ Given player 1's strategy p_1 , the best response of player 2 is to select a price p_2 slightly lower than p_1 under the constraint that $p_2 \ge c_2$:

$$p_2^* = \max\{c_2, p_1 - \epsilon\}$$

► Both players will gradually decrease their prices, until one player gets to his producing cost. Therefore, the Nash equilibrium is

$$\begin{cases} p_1^* = [c_2]^-, & p_2^* \in [c_2, \infty) & \text{if } c_1 < c_2 \\ p_1^* \in [c_1, \infty), & p_2^* = [c_1]^- & \text{if } c_1 > c_2 \\ p_1^* = p_2^* = c & \text{if } c_1 = c_2 = c \end{cases}$$

The Bertrand Model

- Illustration of Equilibrium
 - Geometrically, the Nash equilibrium is the intersection of both players' best response curves.

- The Hotelling model studies the effect of locations on the price competition among two or more firms.
- Key features
 - Two firms at different locations sell the homogeneous good;
 - ▶ The customers are uniformly distributed between two firms.
 - ► Customers incur a transportation cost as well as a purchasing cost.
 - ► The firms are economically rational and act strategically, seeking to maximize profits given their competitors' decisions.

- Example: The Hotelling Game
 - ► Two firms at different locations decide their respective prices simultaneously;
 - ▶ The consumers buy products from a firm with a lower total cost, including both the transportation cost and the purchasing cost.

Game Formulation

- ▶ The set of players is $\mathcal{I} = \{1, 2\}$, each locating at one end of the interval [0, 1];
- ▶ The strategy set available to each player $i \in \mathcal{I}$ is the set of all nonnegative real numbers, i.e., $p_i \in [0, \infty)$;
- ► The payoff received by each player *i* is a function of both players' strategies, defined by

$$\Pi_i(p_i, p_{-i}) = (p_i - c_i) \cdot D_i(p_1, p_2)$$

- ★ c_i is the unit producing cost;
- ★ $D_i(p_1, p_2)$ is the ratio of consumers coming to player i.

- Consumer Demand: $D_i(p_1, p_2)$
 - ▶ Under price profile (p_1, p_2) , the total cost of a consumer at location $x \in [0, 1]$ buying products from player 1 or 2 is

$$C_1(x) = p_1 + w \cdot x$$
, and $C_2(x) = p_1 + w \cdot (1 - x)$

▶ Under (p_1, p_2) , two players receive the following consumer demand:

$$D_1(p_1, p_2) = \frac{p_2 - p_1 + w}{2w}, \quad D_2(p_1, p_2) = \frac{p_1 - p_2 + w}{2w}$$

Equilibrium Analysis

▶ Given player 2's strategy p_2 , the best response of player 1 is

$$p_1^* = B_1(p_2) = \frac{p_2 + w + c_1}{2}$$

▶ Given player 1's strategy p_1 , the best response of player 2 is

$$p_2^* = B_2(p_1) = \frac{p_1 + w + c_2}{2}$$

► Nash Equilibrium:

$$p_1^* = \frac{3w + c_1 + c_2}{3} + \frac{c_1}{3}, \quad p_2^* = \frac{3w + c_1 + c_2}{3} + \frac{c_2}{3}.$$

- Illustration of Equilibrium
 - Geometrically, the Nash equilibrium is the intersection of both players' best response curves.

Section 6.3: Wireless Service Provider Competition Revisited

Network Model

- A set $\mathcal{J} = \{1, \dots, J\}$ of service providers
 - ▶ Provider j has a supply Q_j of resource (e.g., channel, time, power)
 - Providers operate on orthogonal spectrum bands
- ullet A set $\mathcal{I} = \{1, \dots, I\}$ of users
 - ▶ User i can obtain resources from multiple providers: $m{q}_i = (q_{ij}, orall j \in \mathcal{J})$
 - ▶ User *i*'s utility function is $u_i \left(\sum_{j=1}^{J} q_{ij} c_{ij} \right)$: increasing and strictly concave

An Example: TDMA

- Each provider j has a total spectrum band of W_i .
- q_{ij} : the fraction of time that user i transmits on provider j's band
 - ▶ Constraints: $\sum_i q_{ii} \leq 1$, for all $j \in \mathcal{J}$.
- c_{ii} : the data rate achieved by user i on provider j's band

$$c_{ij} = W_j \log(1 + \frac{P_i |h_{ij}|^2}{\sigma_{ij}^2 W_j})$$

- ▶ *P_i*: user *i*'s peak transmission power.
- h_{ij}: the channel gain between user i and network j.
 σ²_{ij}: the Gaussian noise variance for the channel.
- $u_i\left(\sum_{i=1}^J q_{ij}c_{ij}\right)$: user i' utility of the total achieved data rate

Two-Stage Game

- ullet Stage I: each provider $j \in \mathcal{J}$ announces a unit price p_j
 - ▶ Each provider *i* wants to maximize his revenue
 - ▶ Denote $\mathbf{p} = (p_i, \forall j \in \mathcal{J})$ as the price vectors of all providers.
- ullet Stage II: each user $i \in \mathcal{I}$ chooses a demand vector $oldsymbol{q}_i = (q_{ij}, orall j \in \mathcal{J})$
 - ► Each user *i* wants to maximize his payoff (utility minus payment)
 - ▶ Denote $\mathbf{q} = (\mathbf{q}_i, \forall i \in \mathcal{I})$ as the demand vector of all users.
- Analysis based on backward induction

Goal: Derive the SPNE

- A price demand tuple $(p^*, q^*(p^*))$ is a SPNE if no player has an incentive to deviate unilaterally at any stage of the game.
 - Each user *i* maximizes its payoff by choosing the optimal demand $q_i^*(p^*)$, given prices p^* .
 - ▶ Each provider j maximizes its revenue by choosing price p_j^* , given other providers' prices $p_{-j}^* = (p_k^*, \forall k \neq j)$ and the user demands $q^*(p^*)$.

Stage II: User's Demand Optimization

• Each user $i \in \mathcal{I}$ solves a user payoff maximization (UPM) problem:

$$\mathbf{UPM}: \max_{\boldsymbol{q}_i \geq \mathbf{0}} \left(u_i \left(\sum_{j=1}^J q_{ij} c_{ij} \right) - \sum_{j=1}^J p_j q_{ij} \right).$$

Stage II: User's Demand Optimization

• Each user $i \in \mathcal{I}$ solves a user payoff maximization (UPM) problem:

$$\mathbf{UPM}: \max_{q_i \geq \mathbf{0}} \left(u_i \left(\sum_{j=1}^J q_{ij} c_{ij} \right) - \sum_{j=1}^J p_j q_{ij} \right).$$

- Problem UPM may have more than one optimization solution q_i^*
 - ightharpoonup Since it is not strictly concave maximization problem in q_i^*

Stage II: User's Demand Optimization

• Each user $i \in \mathcal{I}$ solves a user payoff maximization (UPM) problem:

$$\mathbf{UPM}: \max_{\boldsymbol{q}_i \geq \mathbf{0}} \left(u_i \left(\sum_{j=1}^J q_{ij} c_{ij} \right) - \sum_{j=1}^J p_j q_{ij} \right).$$

- Problem UPM may have more than one optimization solution q_i^*
 - ightharpoonup Since it is not strictly concave maximization problem in q_i^*
- Problem UPM has a unique solution of the effective resource xi

Lemma (6.16)

- For each user $i \in \mathcal{I}$, there exists a unique nonnegative value x_i^* , such that $\sum_{j \in \mathcal{J}} c_{ij} q_{ij}^* = x_i^*$ for every maximizer \boldsymbol{q}_i^* of the UPM problem.
- For any provider j such that $q_{ij}^*>0$, $p_j/c_{ij}=\min_{k\in\mathcal{J}}p_k/c_{ik}$.

Decided vs. Undecided Users

Definition (Preference set)

For any price vector \boldsymbol{p} , user i's preference set is

$$\mathcal{J}_i(\boldsymbol{p}) = \left\{ j \in \mathcal{J} : \frac{p_j}{c_{ij}} = \min_{k \in \mathcal{J}} \frac{p_k}{c_{ik}} \right\}.$$

Decided vs. Undecided Users

Definition (Preference set)

For any price vector \boldsymbol{p} , user i's preference set is

$$\mathcal{J}_i(\boldsymbol{p}) = \left\{ j \in \mathcal{J} : \frac{p_j}{c_{ij}} = \min_{k \in \mathcal{J}} \frac{p_k}{c_{ik}} \right\}.$$

- A decided user has a singleton preference set.
- An undecided user has a preference set that includes more than one provider.

Decided vs. Undecided Users

Definition (Preference set)

For any price vector \boldsymbol{p} , user i's preference set is

$$\mathcal{J}_i(\boldsymbol{p}) = \left\{ j \in \mathcal{J} : \frac{p_j}{c_{ij}} = \min_{k \in \mathcal{J}} \frac{p_k}{c_{ik}} \right\}.$$

- A decided user has a singleton preference set.
- An undecided user has a preference set that includes more than one provider.
- One can use a bipartite graph representation (BGR) to uniquely determine the demands of undecided users.
- This will lead to all users' optimal demand $q^*(p) = (q_i^*(p), \forall i \in \mathcal{I})$ in Stage II.

Stage I: Provider's Revenue Optimization

• Each provider $j \in \mathcal{J}$ solves a provider revenue maximization (PRM) problem

$$\mathbf{PRM}: \max_{p_j \geq 0} \quad p_j \cdot \min \left(Q_j, \sum_{i \in \mathcal{I}} q_{ij}^*(p_j, p_{-j}) \right)$$

 Solving the PRM problem requires the consideration of other providers' prices p_{-j}.

Benchmark: Social Welfare Optimization (Ch. 4)

SWO: Social Welfare Optimization Problem

maximize
$$\sum_{i \in \mathcal{I}} u_i\left(x_i\right)$$
 subject to $\sum_{j \in \mathcal{J}} q_{ij}c_{ij} = x_i, \ \forall i \in \mathcal{I},$ $\sum_{i \in \mathcal{I}} q_{ij} = Q_j, \ \forall j \in \mathcal{J},$ variables $q_{ij}, x_i \geq 0, \ \forall i \in \mathcal{I}, j \in \mathcal{J}.$

Stage I: Provider's Revenue Optimization

Theorem

Under proper technical assumptions, the unique socially optimal demand vector \mathbf{q}^* and the associated Lagrangian multiplier vector \mathbf{p}^* of the SWO problem constitute the unique SPNE of the provider competition game.

Optimization, Game, and Algorithm

Figure: Relationship among different concepts

Section 6.4: Competition with Spectrum Leasing

Network Model

Secondary users (transmitter-receiver pairs)

Stage IIII: Users' Bandwidth Demands

• User k's payoff of choosing operator i = 1, 2

$$u_k(\pi_i, \mathbf{w}_{ki}) = \mathbf{w}_{ki} \ln \left(\frac{P_i^{\max} h_i}{n_0 \mathbf{w}_{ki}} \right) - \pi_i \mathbf{w}_{ki}$$

- High SNR approximation of OFDMA system
- ▶ Optimal demand: $w_{ki}^*(\pi_i) = \arg\max_{\mathbf{w}_{ki}>0} u_k(\pi_i, \mathbf{w}_{ki}) = g_k e^{-(1+\pi_i)}$
- ▶ Optimal payoff: $u_k(\pi_i, w_{ki}^*(\pi_i))$
- User k prefers the "better" operator: $i^* = \arg\max_{i=1,2} u_k(\pi_i, w_{ki}^*(\pi_i))$
- Users demands may not be satisfied due to limited resource
 - Difference between preferred demand and realized demand

Stages II: Pricing Game

- Players: two operators
- Strategies: $\pi_i \geq 0, i = 1, 2$
- Payoffs: profit R_i for operator i = 1, 2:

$$R_i(B_i, B_j, \pi_i, \pi_j) = \pi_i Q_i(B_i, B_j, \pi_i, \pi_j) - B_i C_i$$

Stage II: Pricing Equilibrium

- Symmetric equilibrium: $\pi_1^* = \pi_2^*$.
- Threshold structure:
 - ▶ Unique positive equilibrium exists $B_1 + B_2 \le Ge^{-2}$.

Stage I: Leasing Game

- Players: two operators
- Strategies: $B_i \in [0, \infty), i = 1, 2$, and $B_1 + B_2 \leq Ge^{-2}$.
- Payoffs: profit R_i for operator i = 1, 2:

$$R_i(B_i, B_j) = B_i \left(\ln \left(\frac{G}{B_i + B_j} \right) - 1 - C_i \right)$$

Stage I: Leasing Equilibrium

- Linear in wireless characteristics $G = \sum_i g_i$;
- Threshold structure:
 - Low costs: infinitely many equilibria
 - ► High comparable costs: unique equilibrium
 - ► High incomparable costs: unique monopoly equlibrium

(L): Infinitely many equilibria

(HC) : Unique equilibrium

(HI)-(HI') : Unique equilibrium

Equilibrium Summary (Assuming $C_i \leq C_j$)

	LOW	HC	HI
Costs	$C_i + C_j \leq 1$	$C_i + C_j > 1$,	$C_j > 1 + C_i$
	-	$C_j - C_i \leq 1$	
equilibria	Infinite	Unique	Unique
(B_i^*, B_i^*)	$(ho Ge^{-2}, (1- ho) Ge^{-2}),$	$\left(\frac{(1+C_{j}-C_{i})G}{2e^{\frac{C_{i}+C_{j}+3}{2}}},\frac{(1+C_{i}-C_{j})G}{2e^{\frac{C_{i}+C_{j}+3}{2}}}\right)$	$(Ge^{-(2+C_i)},0)$
	$\rho \in [C_j, (1-C_i)]$	(20 - 20 - ,	
(π_i^*,π_j^*)	(1,1)	$\left(rac{C_i+C_j+1}{2},rac{C_i+C_j+1}{2} ight)$	$(1+C_i,N/A)$
User SNR	e^2	$e^{\frac{C_i+C_j+3}{2}}$	e^{2+C_i}
User Payoff	$g_k e^{-2}$	$g_k e^{-\left(\frac{C_i+C_j+3}{2}\right)}$	$g_k e^{-(2+C_i)}$

- Users achieve the same SNR
- User k's payoff is linear in g_k

Robustness of Results

- To obtain closed form solutions, we have assumed
 - ► All users achieve high SNR
- Previous observations still hold in the general case
 - ▶ Users operate in general SNR regime: $r_{ki}(w_{ki}) = w_{ki} \ln \left(1 + \frac{P_k^{\max} h_k}{n_0 w_{ki}}\right)$

Impact of Duopoly Competition on Operators

- Benchmark: Coordinated Case
 - Operators cooperate in investment and pricing to maximize total profit
- Define

$$\mbox{Efficiency Ratio} = \frac{\mbox{Total Profit in Competition Case}}{\mbox{Total Profit in Coordinated Case}}$$

• Price of Anarchy = \min_{C_i, C_i} Efficiency Ratio = 0.75.

Section 6.5: Chapter Summary

Key Concepts

- Theory: Game Theory
 - Dominant Strategy
 - Pure and Mixed Strategy Nash Equilibrium
 - Subgame Perfect Nash Equilibrium
- Theory: Oligopoly
 - Cournot competition
 - Bertrand competition
 - Hotelling competition
- Application: Wireless Network Competition Revisited
- Application: Competition with Spectrum Leasing

References and Extended Reading

J. Huang, "How Do We Play Games?" online video tutorial, on YouKu (http://www.youku.com/playlist_show/id_19119535.html) and iTunesU (https://itunes.apple.com/hk/course/how-do-we-play-games/id642100914)

V. Gajic, J. Huang, and B. Rimoldi, "Competition of Wireless Providers for Atomic Users," *IEEE Transactions on Networking*, vol. 22, no. 2, pp. 512 - 525, April 2014

L. Duan, J. Huang, and B. Shou, "Duopoly Competition in Dynamic Spectrum Leasing and Pricing," *IEEE Transactions on Mobile Computing*, vol. 11, no. 11, pp. 1706 1719, November 2012

http://ncel.ie.cuhk.edu.hk/content/wireless-network-pricing