Bargaining Theory and Solutions

Lin Gao

IERG 3280 Networks: Technology, Economics, and Social Interactions

Spring, 2014

Lin Gao (NCEL, IE@CUHK)

Bargaining Theory

IERG 3280, Spring 2014

Outline

- Bargaining Problem
- Bargaining Theory
 - Axiomatic Approach
 - Strategic Approach
- Nash Bargaining Solution (Axiomatic)
- Rubinstein Bargaining Solution (Strategic)
- Conclusion

2

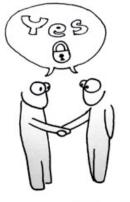
Bargaining Problem

Bargaining is one of the most common activities in daily life.

Examples:

-- ---

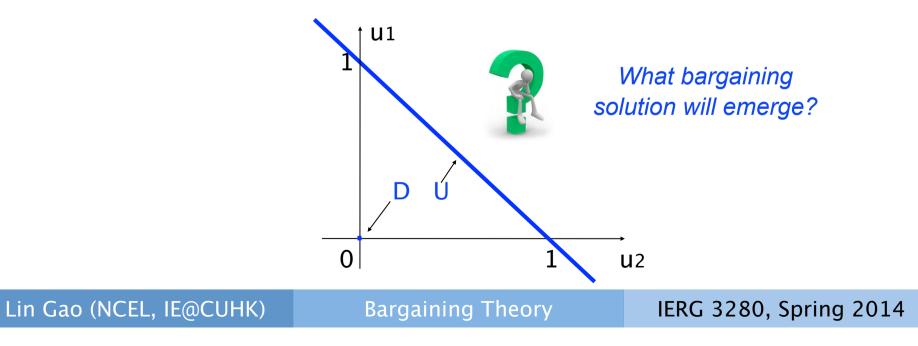
- Price bargaining in an open market;
- Wage bargaining in a labor market;
- Score bargaining after an examination;


bargaining

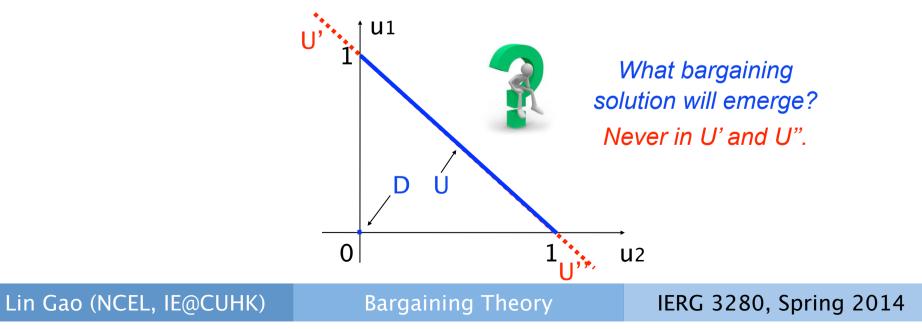
Bargaining Theory

Bargaining Problem

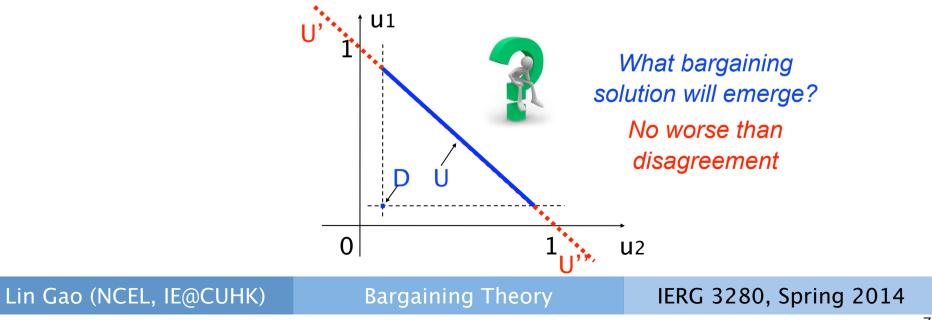
Bargaining problems represent situations in which:


- There is a common interest among players to address a mutually agreed outcome (agreement).
- Players have specific objectives (utility or payoff).
- No agreement may be imposed on any player without his approval, i.e., the disagreement is possible.
- There is a conflict of interest among players about agreements.
- Bargaining solution
 - An agreement or a disagreement

Bargaining Theory

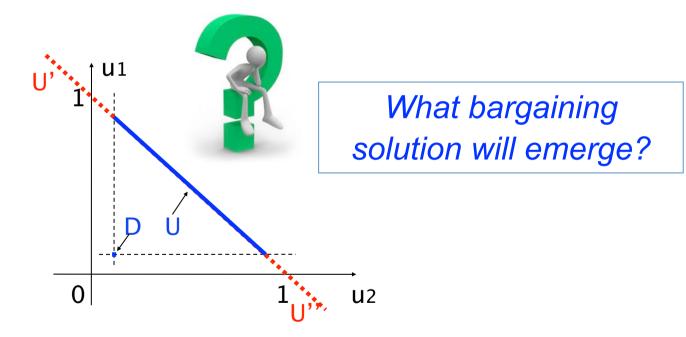

A simple example

- A simple example: Player 1 (seller) sells a book to Player 2 (buyer) at a price p=?.
 - Problem: Players bargain for the price p
 - ► The objective (payoff) of players: u1=p-0, u2 =1-p
 - The set of feasible agreements: $U = \{(u_1, u_2) \mid u_1 + u_2 = 1\}$
 - The disagreement: $D = (d_{1}, d_{2})$, e.g., D=(0, 0)
 - ▶ A bargaining solution is an outcome $(v_1,v_2) \in U \cup D$


A simple example

- A simple example: Player 1 (seller) sells a book to Player 2 (buyer) at a price p=?.
 - Problem: Players bargain for the price p
 - ► The objective (payoff) of players: u1=p-0, u2 =1-p
 - The set of feasible agreements: $U = \{(u_1, u_2) \mid u_1 + u_2 = 1\}$
 - The disagreement: $D = (d_1, d_2)$, e.g., D=(0,0)
 - ▶ A bargaining solution is an outcome $(v_1,v_2) \in U \cup D$

A simple example

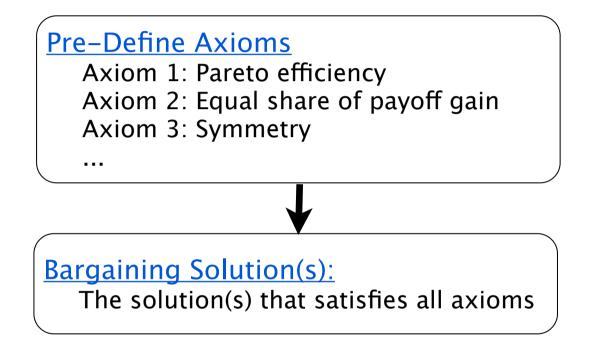

- A simple example: Player 1 (seller) sells a book to Player 2 (buyer) at a price p=?.
 - Problem: Players bargain for the price p
 - ► The objective (payoff) of players: u1=p-0, u2 =1-p
 - The set of feasible agreements: $U = \{(u_1, u_2) \mid u_1 + u_2 = 1\}$
 - The disagreement: $D = (d_1, d_2)$, e.g., D = (0.1, 0.1)
 - ▶ A bargaining solution is an outcome $(v_1,v_2) \in U \cup D$

Outline

- Bargaining Problem
- Bargaining Theory
 - Axiomatic Approach
 - Strategic Approach
- Nash Bargaining Solution (Axiomatic)
- Rubinstein Bargaining Solution (Strategic)
- Conclusion

- Bargaining theory is a theoretic tool used to identify the bargaining solution, given
 - ▶ (i) the set of all feasible agreements U
 - ▶ (ii) the disagreement D

Bargaining Theory

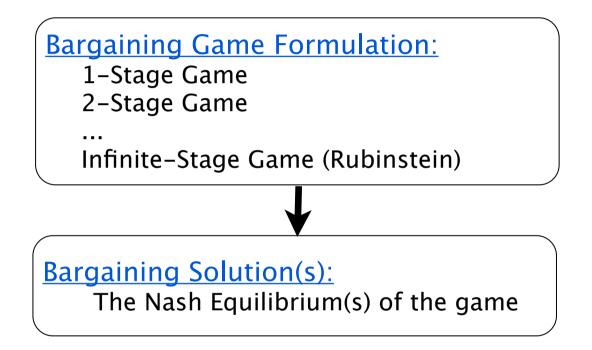

Axiomatic Approach

- (i) Abstracting away the details of the bargaining process;
- (ii) Considering only the set of outcomes that satisfy certain pre-defined properties (i.e., Axioms).
- Typical Example: Nash Bargaining Model, 1950

Strategic Approach

- (i) Modeling the bargaining process as a game explicitly;
- (ii) Considering the game outcome (i.e., Nash equilibrium) that results from the players' self-enforcing interactions.
- Typical Example: Rubinstein Bargaining Model, 1982

Bargaining solution by axiomatic approach

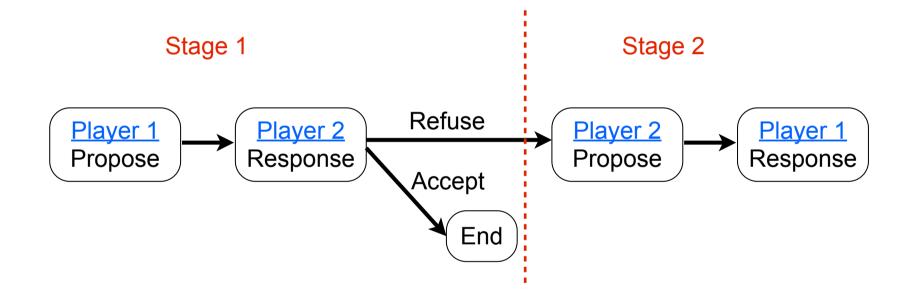

Bargaining solution is the solution satisfying all axioms. Typical Example: Nash Bargaining Model, 1950 Shapley Bargaining Model, 1976

Lin Gao (NCEL, IE@CUHK)

Bargaining Theory

IERG 3280, Spring 2014

Bargaining solution by strategic approach


Bargaining solution is the Nash equilibrium of the game. Typical Example: Rubinstein Bargaining Model, 1982

Bargaining Theory

Bargaining solution by strategic approach

- A possible 2-stage bargaining game formulation:
 - Stage 1: Player 1 proposes a solution (e.g., a price p=p1 in the previous example), and Player 2 accepts or refuses;
 - If player 2 accepts, bargaining terminates at the proposed solution (agreement), otherwise, turn to Stage 2;
 - Stage 2: Player 2 proposes a solution, and player 1 accepts or refuses;
 - If player 1 accepts, bargaining terminates at the proposed solution (agreement), otherwise, bargaining terminates at the disagreement.

Bargaining solution by strategic approach

2-Stage Propose-Respond Bargaining Game Formulation

Lin Gao (NCEL, IE@CUHK)

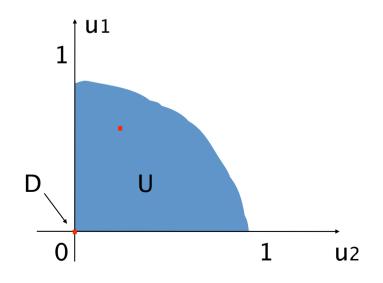
Bargaining Theory

IERG 3280, Spring 2014

Outline

- Bargaining Problem
- Bargaining Theory
 - Axiomatic Approach
 - Strategic Approach
- Nash Bargaining Solution (Axiomatic)
- Rubinstein Bargaining Solution (Strategic)
- Conclusion

- 2-person bargaining problem [Nash J., 1950]
- An axiomatic approach based bargaining solution


4 Axioms

- (1) Pareto Efficiency
- (2) Symmetry
- (3) Invariant to Affine Transformations
- (4) Independence of Irrelevant Alternatives
- Nash Bargaining Solution (NBS) is the unique solution that satisfies the above 4 axioms.

Nash Bargaining Model

A general 2-person bargaining model

- The set of bargaining players: N = {1,2}
- ► The set of feasible agreements: U = {(u1,u2)∈a bounded convex set}
- The outcome of disagreement: $D = (d_{1}, d_{2})$, e.g., D = (0, 0)
- A Nash Bargaining Solution is the unique outcome $(v_1,v_2) \in U$ $\cup \{D\}$ that satisfies the Nash's 4 axioms.

Nash's Axioms

Nash's 4 Axioms

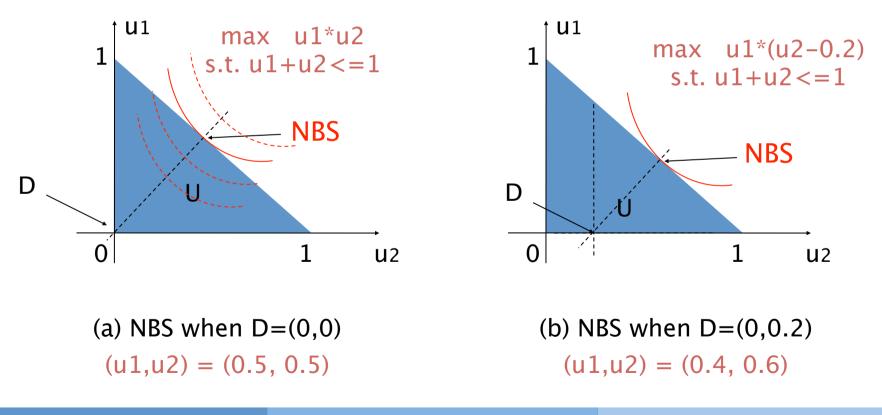
- (1) Pareto Efficiency: None of the players can be made better off without making at least one player worse off;
- (2) Symmetry: If the players are indistinguishable, the solution should not discriminate between them;
- (3) Invariant to Affine Transformations: An affine transformation of the payoff and disagreement point should not alter the outcome of the bargaining process;
- (4) Independence of Irrelevant Alternatives: If the solution (v1,v2) chosen from a feasible set A is an element of a subset B
 ⊆ A, then (v1,v2) must be chosen from B.

**** Thought:** Are these axioms reasonable?

Bargaining Theory

Nash Bargaining Solution

Nash Bargaining Solution (NBS) is the unique solution that satisfies the Nash's 4 axioms.


Definition		
	is a Nash bargaining solution if it solves	the
following optimization problem: max v1,v2	$(v_1 - d_1)(v_2 - d_2)$	(1)
subject to	$(v_1, v_2) \in U$	
	$(v_1, v_2) \ge (d_1, d_2)$	

Lin Gao (NCEL, IE@CUHK)

Nash Bargaining Solution

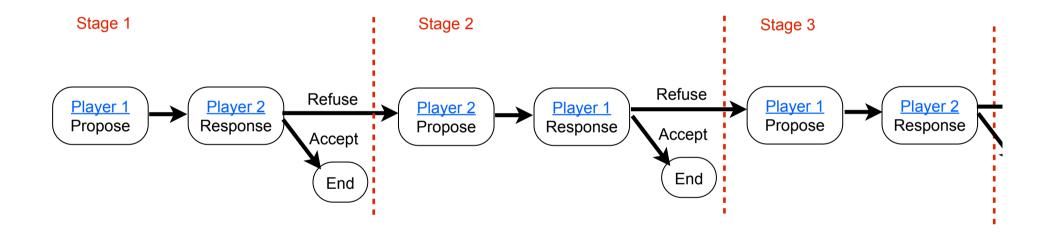
An illustration of NBS: 2 players split 1 dollar

- The set of feasible agreements: $U = \{(u_1, u_2) \mid u_1+u_2 \le 1, u_1, u_2 \ge 0\}$
- The outcome of disagreement: $D = (d_1, d_2)$

Nash Bargaining Solution

Important factors determining a NBS

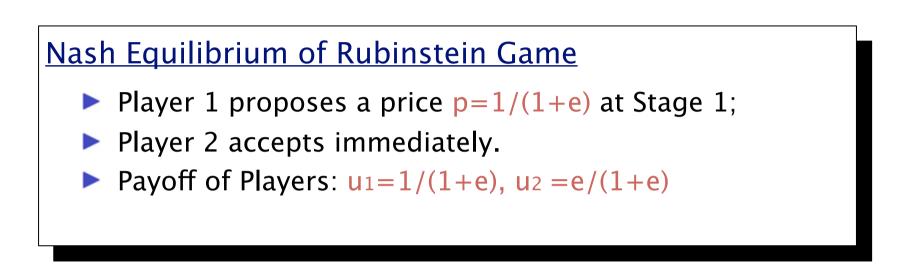
- Feasible agreement sets U
- Disagreement D
 - ► Increase a player's disagreement → higher payoff for the player in Nash Bargaining Solution.
- Bargaining power a
 - ► Increase a player's bargaining power → higher payoff for the player in Nash Bargaining Solution.

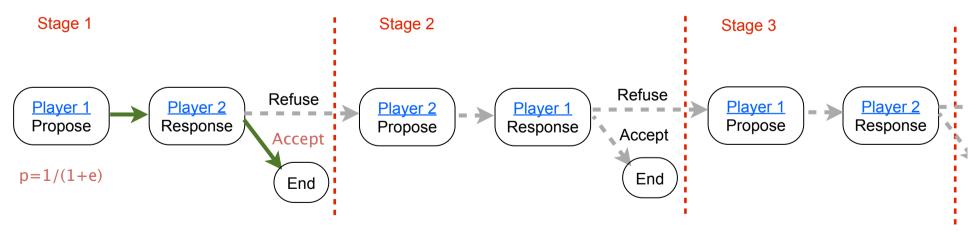

Outline

- Bargaining Problem
- Bargaining Theory
 - Axiomatic Approach
 - Strategic Approach
- Nash Bargaining Solution (Axiomatic)
- Rubinstein Bargaining Solution (Strategic)
- Conclusion

Rubinstein Bargaining Solution

- 2-person bargaining problem [Rubinstein, 1982]
- A strategic approach based bargaining solution
- Bargaining Game Formulation
 - -- Infinite-Stage Propose-Response Game
- Rubinstein Bargaining Solution (RBS) is the Nash equilibrium of the game.


Time Discount – The earlier an agreement is achieved, the higher the payoffs for both players.


Bargaining Theory

Rubinstein Bargaining Solution

- A simple example: player 1 (seller) wants to sell a book to player 2 (buyer) at a price p=?.
 - Problem: Players bargain for the price p
 - The objective (payoff) of players: $u_1=p-0$, $u_2=1-p$
 - The set of feasible agreements: $U = \{(u_1, u_2) | u_1 + u_2 = 1\}$
 - The disagreement: D = (0,0)
 - ▶ A bargaining solution is an outcome $(v_1,v_2) \in U \cup D$
 - Time Discount
 - When achieving an agreement p at Stage t+1, the payoff of players are: u1=(p-0)*e^t, u2=(1-p)*e^t, where 0<e<1.</p>

Rubinstein Bargaining Solution

** Question: How to derive this Nash Equilibrium?

Caa	(NCEL,	
		ІНК
Juu		

Bargaining Theory

IERG 3280, Spring 2014

Rubinstein Bargaining Solution RBS vs NBS

When e-->1, Rubinstein Bargaining Solution (RBS) is equivalent to Nash Bargaining Solution (NBS) !

Outline

- Bargaining Problem
- Bargaining Theory
 - Axiomatic Approach
 - Strategic Approach
- Nash Bargaining Solution (Axiomatic)
- Rubinstein Bargaining Solution (Strategic)

Conclusion

Conclusion

- We discuss the basic formulation of bargaining problem, and two classic approaches to the bargaining solution:
 - Axiomatic approach: Nash Bargaining Solution
 - Strategic approach: Rubinstein Bargaining Solution

Questions

- (p.18) Thought: Are these axioms reasonable?
 - Can you propose other possible axioms?
- (p.26) Question: How to derive this Nash Equilibrium?
 - Formulate the bargaining problem as a T-Stage (where T=1,2,...) Propose-Response game, and derive the Nash Equilibrium.

Thank you !

Lin Gao (NCEL, IE@CUHK)

Bargaining Theory

IERG 3280, Spring 2014