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Background

Introduction

Background

Most of the frequency spectrum resource has been allocated.
[U.S. FA Chart]

Most of the frequency spectrum inefficiently utilized. [Berkeley ’04]

Spectrum utilization depends strongly on time and place. [FCC ’02]

Fixed spectrum allocation results in resources wasting.
Thought: Improve efficiency by allowing unlicensed users to
exploit spectrum whenever it would not cause interference to
licensed users.
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Background

Introduction

Features of Cognitive Radio

Cognitive Capability: spectrum sensing, spectrum analysis and
spectrum decision.
Reconfigurability: operating frequency, modulation, transmission
power, communication technology, etc.

Objectives of Cognitive Radio

Achieve highly reliable and highly efficient wireless
communications
Improve the utilization of the frequency spectrum



logo

Introduction Related Works Game Theory based Dynamic Spectrum Access Economic Theory based Spectrum Trading Summary

Definitions and Functions

Introduction

Definitions of Cognitive Radio

Full Cognitive Radio [Joseph Mitola ’99]

Spectrum Sensing Cognitive Radio [FCC ’03, Haykin ’05, etc.]

Functions of Cognitive Radio [Akyildiz ’06]

Spectrum Sensing
Spectrum Management
Spectrum Sharing
Spectrum Mobility
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Definitions and Functions

Introduction

Dynamic Spectrum Access

A mechanism to adjust the spectrum resource usage in response
to the changing environment and objective.
Dynamic spectrum access by the unlicensed users is a key
approach to achieve cognitive radio.
Major models of dynamic spectrum access: [ZhaoQing ’07]

- Commons-use model
- Shared-use model
- Exclusive-use model
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Main Contributions

Introduction

Main Contributions
In this work, we consider the economic theory based dynamic
spectrum access in cognitive radio networks, including:

- Game-based DSA in multi-hop CRN and multi-cell CRN
- Auction-based spectrum trading in multi-seller CRN
- Contract-based spectrum trading in monopoly CRN

General Assumptions

Perfect spectrum sensing ability
Perfect spectrum mobility
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Related Works

Classifications of Spectrum Access Techniques

According to access scheme: static, dynamic and hybrid
According to network architecture: centralized and distributed
According to collaboration behavior: cooperative and
non-cooperative

Spectrum Access in Cognitive Radio Network

Spectrum access in CRN are usually (but not restricted in)
dynamic, distributed, and non-cooperative.
Related works in dynamic spectrum access:

- Graph theory based DSA schemes
- Game theory based DSA schemes
- Auction theory based DSA schemes
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Related Works

Graph Theory Based Dynamic Spectrum Access

List-coloring model [Xin Liu ’05]

Color-sensitive graph coloring model [Haitao Zheng ’05]

Modified color-sensitive graph coloring model with low
complexity [Chulin Liao ’06]

... ...
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Related Works

Game Theory Based Dynamic Spectrum Access

Stackelberg game model [Ali O. Ercan ’08, Igor Stanojev ’08]

Correlated Equilibrium [Zhu Han ’07]

Exact potential game (EPG) model [Nie Nie ’06]

Bertrand game model [Dusit Niyato ’08]

... ...
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Related Works

Auction Theory Based Dynamic Spectrum Access

Auction-based spectrum sharing [Jianwei Huang ’06]

Truthful and computationally-efficient spectrum auction [Xia Zhou ’08]

Truthful double spectrum auction [Xia Zhou ’09]

Repeated auction [Zhu Han ’09]

... ...
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Basic Framework – Non-cooperative Game

Game Theory based DSA - I

Basic Cognitive Radio Network Model

System description:
- Channel allocation process is performed by the users distributedly.
- Each users equips with multiple radio devices.
- All users resides in a single collision domain.
- All communication sessions are single-hop.
- All channels are identical for each user.
- Channel is shared equally among the radios using that channel.
- User’s utility is defined as the achieved channel capacity.

Non-cooperative Game Approach [M. Felegyhazi, PhD Thesis ’07]

Single Collision Domain

u1 u1 u2 u2

c1 c2 c3 c4 c5 c6

u2 u2

u1
u2

u3

u4

channels

 Channels: c1 - c6
 Players:    u1 - u4

u4u4u3 u3

U1 =1+1=2         
U2 =½+½+½+½=2
U3 =½+½=1       
U4 =½+½=1

Figure: (a) Single-hop cognitive radio network model, (b) An example of channel allocation
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Basic Framework – Non-cooperative Game

Game Theory based DSA - I

Non-cooperative Game Approach

Each user make its decision independently.
- Strategy of user: Selecting a channel for each radio
- Utility of user: Achieved channel capacity

Nash Equilibrium

A channel allocation is an NE iff the following conditions hold:
c.1 ki = k for any user i , and
c.2 δi,j ≤ 1 for any channel ci and cj .

u1 u1 u2 u2

c1 c2 c3 c4 c5 c6

u2 u2

U1 =1+1=2         U2 =½+½+½+½=2
U3 =½+½=1       U4 =½+½=1

u1 u1 u2 u2

c1 c2 c3 c4 c5 c6

u4

u2 u2

u4

U1 =1+1+¼+¼=2.5          U2 =¼+¼+1/3+1/3=7/6
U3 =¼+¼+1/3+1/3=7/6    U4 =¼+¼+1/3+1/3=7/6

u3 u3

u1 u1

u4u4

u1 u1 u2 u2

c1 c2 c3 c4 c5 c6

u2 u2

U1 =½+½+1/3+1/3=5/3        U2 =1/3+1/3+1/3+1/3=4/3
U3 =1/3+1/3+1/3+1/3=4/3    U4 =½+½+1/3+1/3=5/3

u4u3 u3 u4 u3 u3 u3 u3

u1 u1

u3 u3u4u4

u4u4

Figure: Illustration of NE and non-NE channel allocations where k = 4
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Multi-hop Extension – Hybrid Game

Game Theory based DSA - II

Multi-hop Extension

System modification:
- Communication sessions may contain multiple hops.
- The utility is defined as the end-to-end throughput of the session,

i.e., the minimal capacity of users in the same session.

Non-cooperative game and Nash equilibrium are not suitable for
multi-hop networks.
Hybrid game approach [L. Gao, TMC ’09]

c1 c2 c3 c4 c5 c6

u2 u2

u1 u1

u2 u2

u1u1

c1 c2 c3 c4 c5 c6

u2

u2u1

u1 u2 u2

u1u1

Figure: Assume u1 and u2 are within the same session. By simultaneously adjusting the
strategies of u1 and u2, both utilities increase from 1.33 to 1.5 !
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Multi-hop Extension – Hybrid Game

Game Theory based DSA - II

Hybrid Game Approach

Non-cooperative among communication sessions
Cooperative within communication session

- Case I: Relocating the radios to improve the capacity of others
- Case II: Exchanging the channels with each other

c1 c2 c3 c4 c5 c6

u2

u2u1

u1

u2 u2

u1u1

c1 c2 c3 c4 c5 c6

u2 u2

u1 u1 u2 u2

u1u1

Case I Case II

Figure: (a) Relocating the radio of u1 to improve the capacity of u2, and (b) Exchanging the
channels of u1 and u2 to improve the capacity of u2.
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Multi-hop Extension – Hybrid Game

Game Theory based DSA - II

Nash Equilibrium (MMCPNE)

Definition of MMCPNE
- MMCPNE is such a channel allocation that none of sessions can

improve its utility by changing the strategies of its members.

Necessary conditions for MMCPNE
- Theorem 2 [L. Gao, TMC ’09]

Sufficient conditions for MMCPNE
- Conjecture 1 [L. Gao, TMC ’09]

Convergence

MMCP Algorithm
- Distributed algorithm that enables users to converge to MMCPNE.
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Multi-hop Extension – Hybrid Game

Game Theory based DSA - II

Simulation Results
Simulation parameters:

- 8 channels, 5 communication sessions (1 two-hop session and 4
single-hop sessions), 4 radios in each user

Performance criterions:
- Average throughput of multi-hop sessions
- Average spectrum usage factor of multi-hop sessions
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Multi-cell Extension – Two-Tier Game

Game Theory based DSA - III

Multi-cell Extension
System modification:

- The allocated channels belong to multiple cells.
- Channels are identical within a cell, but different among cells.
- Each user can only connect with one cell.
- Each user decides which cell it should camp on and which

channels (of the serving cell) it should occupy.

Two-tier game approach [L. Gao, CS-RA ’09]

2
Sub-channels 
of Cell 2 2 2 2 1 1 1 1

4 4 4 4

c1c2c3c4c5c6c7c8

Cell 1

User 3

User 2

User 4 User 1

Cell 2

Figure: Multi-cell cognitive radio network model and an example of cell selection and channel
allocation.
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Multi-cell Extension – Two-Tier Game

Game Theory based DSA - III

Two-tier Game Approach

Inter-cell game:
- Selecting the optimal cell according to mixed strategy

(probabilities) derived from the expected payoff.

Intra-cell game:
- Choosing the proper channels in the serving cell.

Nash Equilibrium of Intra-cell Game

Same as NE of non-cooperative game in the basic model.
Achieve load balancing over the channels in each cell.
Expected utility of user i in cell c:

- Ui,c = Gi,c ·min
n

|nc |KiP
t∈Uc Kt

, Ki

o
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Multi-cell Extension – Two-Tier Game

Game Theory based DSA - III

Mixed-Strategy Nash Equilibrium of Inter-cell Game

Mixed-strategy: zi = (p1
i , ..., pm

i ), s.t.
∑m

j=1 pj
i = 1.

Mixed-Strategy Nash Equilibrium is such a mixed-strategy profile
that none of users can improve its expected payoff by unilaterally
changing the strategies of itself.

Best response dynamic: z(t)
i = Bi

(
z(t−1)
−i

)
1

0
1

1 1

1

1

0

( )1* 1 1
1 1 2 3,p B p p=

1
1p

1
2p

1
3p

1
1p

1
2p

1
3p

Figure: The best response function and mixed-strategy Nash equilibrium for the network with 2
cells and 3 users.
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Multi-cell Extension – Two-Tier Game

Game Theory based DSA - III

Convergences

RA Algorithm: Converging to intra-cell Nash equilibrium.
- Problem: Unstable channel allocations caused by simultaneously

moving of different users.
- Solution: Backoff mechanism

CS Algorithm: Converge to inter-cell mixed Nash equilibrium.
- Problem 1: Mixed strategy of one user can never be observed by

other users, which makes best response dynamic unavailable.
- Solution: Learning the load distribution of cells
- Problem 2: Mixed strategy zi will degenerate to pure strategy due

to the non-smooth feature of best response functions.
- Solution: Smoothed best response function
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Multi-cell Extension – Two-Tier Game

Game Theory based DSA - III

Simulation Results
Simulation parameters:

- 3 cells each owning 64 channels, 50 users each equipping 5 radios.
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Fig. 8. Dynamic of variance ratio using W = 16,
|Ci| = 64, |Ui| = 50, kj,i = 5.
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Fig. 9. Experimental EM-ASN of players using
W = 16, |Ci| = 64, |Ui| = 50, kj,i = 5.

22 24 26 28 30 32 34 36 38 40 42 44 46
0

0.05

0.1

0.15

Cell Load

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Cell 1
Cell 2
Cell 3

Fig. 10. CLPDF learned by player 1 at time 500s
using ε = 0.99, |A| = 3 and |U| = 100.
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Fig. 11. Dynamic of mixed strategies of all players in the inter-cell game using |A| = 3 and |U| = 50.

B. CS&RA-Algorithm in Multiple Cells

In this subsection, we provide the simulation results of the
CS-Algorithm combining with RA-Algorithm in the system
with multiple cells. Without loss of generality, we assume that
kj,i = ξi, ∀j ∈ U, i ∈ A, and thus we can simplify the EM-
ASN (and M-ASN) of player j in cell i as E[k̃∗j,i] = k̃∗j,i =
ξi

Ni
. We further assume that πi = 1, ∀i ∈ A, qj = 1, ∀j ∈

U. Moreover, we set the attenuating factor ε = 0.99 and the
smoothing factor γ = 1.

We first investigate the convergence of CS-Algorithm, which
can be represented as the dynamics of the mixed strategies of
players. Figure 11 presents the dynamics of mixed strategies
of all players, where |A| = 3 and |U| = 100.14 The left graph
in Figure 11 presents the probabilities of selecting cell 1, i.e.,
p1

j , ∀j ∈ U, and the middle and right graphs present p2
j and

p3
j , respectively. It is easy to see that the mixed strategy of

each player converges well to the steady state, i.e., the Nash
equilibria. For example, player 1 converges to the strategy
z1 = (0.38, 0.59, 0.03), player 2 converges to the strategy z2 =
(0.17, 0.2, 0.63) and so on.

Then we investigate the CLPDF learned by players, i.e.,
βi,r in (39), which is essential for the calculating of the
expected payoff in (38). Figure 10 presents the CLPDF of
all cells learned by player 1 at time 500s using attenuating
factor ε = 0.99, where |A| = 3 and |U| = 100.15 The dashed
lines in Figure 10 denote the analytical CLPDF which derived
by the cell selection strategies of other players, and we can

14Note that we focus on the mixed-strategies of players 1 to 5 only.
15Note that we focus on the load distribution with positive probabilities.

find that the learned CLPDF converges well to the analytical
CLPDF.

C. Mixed-strategy Nash equilibria in Inter-cell Game

So far, we have shown the convergence of CS&RA-
Algorithm and the feasibility of EM-ASN and CLPDF. Thus
we can derive the expected payoff according to Lemma 5, from
which we can easily address the Nash equilibrium. We show
the mixed-strategy Nash equilibrium of the inter-cell game in
Figure 12, where |A| = 3, |U| = 100, π1 = π2 = π3 = 1
and B1 = B2 = B3 = 100KHz. The triangles and dots
denote the BSs and MSs, respectively. The arrow denotes the
probability of the associated player selecting the cell which
the arrow aiming at. For example, the red arrows denote the
probabilities of players selecting cell 2. We can find that
the mixed strategies in Nash equilibrium are dramatically
influenced by the distances between MSs and BSs.

We investigate the impaction of BS’s price in the mixed-
strategy Nash equilibrium of the inter-cell game in Figure 13,
where |A| = 3, |U| = 100, π1 = π3 = 1 and π2 = 400.
Comparing Figure 12 and 13, we can find that some players
who preferring cell 2 in Figure 12 turn to cell 1 and 3
due to the increasing of price of cell 2. In other words, the
players prefer the cell with low price, which coincides with
the common sense.

We also investigate the impaction of BS’s bandwidth in the
mixed-strategy Nash equilibrium in Figure 14, where |A| = 3,
|U| = 100, B1 = B2 = 100KHz and B3 = 1MHz. From
Figure 14, we find that the players prefer the cell with the

Figure: Dynamic of mixed strategies of all users in the inter-cell game.
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Fig. 12. Mixed-strategy Nash equilibrium of inter-
cell game using |A| = 3, |U| = 100, π1 = π2 =
π3 = 1 and B1 = B2 = B3 = 100KHz.
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Fig. 13. Impaction of BS’s price in the mixed-
strategy Nash equilibrium using π1 = π3 = 1,
π2 = 400 and B1 = B2 = B3 = 100KHz.
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Fig. 14. Impaction of BS’s bandwidth in the mixed-
strategy Nash equilibrium using π1 = π2 = π3 =
1, B1 = B2 = 100KHz and B3 = 1MHz.
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Fig. 15. Incentive compatibility in separate cells
using π1 = 1, π1 = 1000, qj = 1 or 0.001.
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Fig. 16. Incentive compatibility in closer cells using
π1 = 1, π1 = 1000, qj = 1 or 0.001.
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Fig. 17. Overall throughput and payoff of the
proposed scheme vs. previous scheme.

large bandwidth. Due to space limitations, we do not present
the detail simulation result.

D. Incentive Compatibility

We consider the heterogeneous wireless networks, that is,
both BSs and MSs may be heterogeneous. Without loss of
generality, we classify the cells by the bandwidth and we
divide the cells into two types: the narrow-band cell and the
broad-band cell. Further, we classify the services of MSs as
voice service and data service, which requires low bandwidth
and high bandwidth, respectively. Thus, from the system
perspective, an important issue is to motivate the MSs with
low (or high) bandwidth requirement to select the narrow-band
(or broad-band) cells.

We show that our proposed scheme is incentive compatible,
which means that the MSs with voice service will select
the narrow-band cells with high probabilities, and the MSs
with data service will select the broad-band cells with high
probabilities, by properly setting the price of cells and DCR
of players. We show this property in a cellula system with
|A| = 2, |U| = 100, B1 = 100KHz and B2 = 1MHz. Figure
15 and 16 present the mixed-strategy Nash equilibrium of the
inter-cell game as we set π1 = 1, π2 = 1000, qj = 1 for MSs
with voice service (shown as the gray squares) and qj = 0.001
for MSs with data service (shown as the gray dots). From
Figure 15 and 16, we can easily find that the proposed scheme
is incentive compatible. In fact, as we set a high price for the

broad-band cell and a low DCR for the MSs with data service,
our scheme is incentive compatible.

E. Throughput and Payoff

Figure 17 presents the average throughput and payoff of
all players achieved by the CS&RA-Algorithm with different
smoothed parameters γ, where π1 = π2 = π3 = 1 and
B1 = B2 = B3 = 100KHz. We further compare our proposed
scheme with previous cell selection (PCS) scheme, in which
each player selects the cell with the maximal channel gain (or
SNR). Note that PCS can be seen a typical representation of
the conventional cell selection scheme. From Figure 17, we
find that, in the case of small γ (e.g., γ = 1 or γ = 10),
our proposed scheme outperforms the PCS scheme in terms
of both throughput and payoff. We also find that a larger γ
leads to a poorer performance. In fact, if γ is very large, the
mixed strategy of each player will degenerate to a strategy with
equiprobable on each cell, while if γ is very small, the mixed
strategy of each player will degenerate to a pure strategy.

VII. CONCLUSION

In this paper, we propose a distributed cell selection and
resource allocation mechanism, in which the CS-RA processes
are performed by the MSs independently. We formulate the
problem as a two-tier game named as inter-cell game and intra-
cell game, respectively. In inter-cell game, the MSs select the
cell according to the optimal cell selection strategy which is
derived from the expected payoff. In intra-cell game, the MSs

Figure: Impaction of channel’s cost and bandwidth on the mixed-strategy Nash equilibrium.
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Multi-seller Spectrum Market – Auction

Dynamic Auction based Spectrum Trading

Multi-seller Spectrum Market Model

System Description:
- Multiple POs (sellers) each owning a set of idle channels.
- Multiple SUs (buyers) each desiring to employ a channel.
- Channels are identical within a PO, but different among POs.
- Each channel can only be used by one SU.
- Each SU has a valuation (e.g., capacity) for each channel.
- No cooperation among POs and among SUs.

Objective: Efficiency, Incentive

5 3

3

4 4

3

PO1

900MHz band 5GHz band frequency

: idle channel
: busy channel

PO2

SU1

SU2

SU3

SU4 SU5

SU64

1
1
0.1

0.2

0.1

Figure: Multi-seller cognitive radio network model with 2 POs and 6 SUs.
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Multi-seller Spectrum Market – Auction

Dynamic Auction based Spectrum Trading

Centralized Spectrum Allocation Approaches

Solution for Assignment Problem:
- Linear-programming-based branch-and-bound algorithm
- Graph-theory-based optimal matching algorithm

Centralized approaches are not suitable for the distributed and
non-cooperative CR network.

- Difficult to obtain complete information
- Without considering the incentive of SUs

5 3

3

4 4

3

PO1

900MHz band 5GHz band frequency

: idle channel
: busy channel

PO2

SU1

SU2

SU3

SU4 SU5

SU64

1

Figure: An example of channel allocation which is social optimal but not optimal for SU3.
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Multi-seller Spectrum Market – Auction

Dynamic Auction based Spectrum Trading

Spectrum Auction Basic

Elements of auction:
- Auctioneers: all POs (sellers)
- Bidders: all SUs (buyers)
- Auctioned Items: the idle channels owned by all POs

Types of auction:
- First-price sealed-bid auctions
- Second-price sealed-bid auctions (Vickrey auctions)
- Open ascending-bid auctions (English auctions)
- Open descending-bid auctions (Dutch auctions)



logo

Introduction Related Works Game Theory based Dynamic Spectrum Access Economic Theory based Spectrum Trading Summary

Multi-seller Spectrum Market – Auction

Dynamic Auction based Spectrum Trading

Traditional Spectrum Auction Designs

One-shot (or static) spectrum auction:
- Truthful spectrum bidding strategy [Xiang-Yang Li, ’08]

- Truthful and computationally-efficient spectrum auction [Xia Zhou ’08]

- Truthful double-auction [Xia Zhou ’09]

Multi-shot (or dynamic, progressive) spectrum auction:
- Repeated auction [Zhu Han ’09]

The above spectrum auctions are restricted within the scenario
of single auctioneer, either acted by a PO in single-seller
networks or a virtual centralized entity in multi-seller networks.
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MAP: Multi-Auctioneer Progressive Auction

Basic thought [L. Gao, MAP ’09]

- Multi-Auctioneer and Multi-Item Extension of English Auction

English Auction Multi-item    
English Auction MAP

Single Auctioneer Multiple Auctioneer

English Auction

V2 VN-M VN-1 VNP0 V1 …

Vk : the valuation of SU k for the item, and V1≤V2≤ ... ≤VN 
P : the asking price of the auctioneer

VN-M+1 …

P
M-item English Auction

P

Figure: (a) An illustration of English Auction and MAP, (b) An illustration of the asking price in
(Multi-item) English Auction.
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MAP: Multi-Auctioneer Progressive Auction

Structure of MAP:
- In each auctioneer (PO), there is a multi-item English auction.
- Each bidder (SU) decides which auction market it is going to join.

M-item Eng. Auc. M-item Eng. Auc.P1=40 P2=20

V21 VN-M,1 VN,1P0 V11 … VN-M+1,1 … V22 VN-M,2 VN,2P0 V12 … VN-M+1,2 …

V11=100V12=50

V41=40
V42=70

V31=60 V32=50V22=10V21=30

SU2 Drop

Vkj : the valuation of SU k for the item of PO j
Pj : the asking price of PO j

SU1
SU3 SU4

Figure: An illustration of MAP Auction in a cognitive radio network with 2 POs and 4 SUs.
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Mechanism of MAP
Due to the progressive nature of MAP, we define MAP as a
round-based distributed process that works as follows:

(i) Asking: In the first stage of each round, each PO elicits the
demands for his channel in previous round and judges whether he
is in demanded surplus. If so, the PO raises his price by a step.
-- For each PO i, if di > mi, then Pi = Pi + ε

(ii) Bidding: In the second stage of each round, each SU decides
whether to buy a channel, and if so, selects the PO which
maximizes his utility for bidding, based on the prices vector of POs.
-- For each SU i, find k = arg maxk Vik − Pk

-- if Vik − Pk ≥ 0, then select PO k for bidding
-- else, drop out
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Equilibrium of MAP

Weak Equilibrium (W.E.)
- W.E. is defined as a state in which the demand for channels of

each PO i does not exceed the supply of PO i , i.e., di ≤ mi .

Strong Equilibrium (S.E.)
- S.E. is defined as a state in which (i) the demand for channels of

each PO i does not exceed the supply of PO i , i.e., di ≤ mi , and (ii)
if the demand for channels of PO i is less than the supply of PO i ,
then the price of PO i equals his initial price, i.e., Pi = ci if di < mi .

W.E.

ci

Pi

di=mi

mi

Pi=ci

S.E.

di

Figure: Illustration of W.E. and S.E. with different properties.
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Efficiency of MAP

Theorem 1: The channel assignment achieved by MAP is social
optimal, if ε is small enough.
We prove this theorem using duality theory (specifically the
primal-dual method):
L.1 A channel allocation is optimal if it satisfies the complementary

slackness conditions in primal-dual method.
L.2 The channel assignment achieved by MAP satisfies the

complementary slackness conditions.
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Simulation Results
Simulation parameters:

- 4 POs each owning 6 idle channels, 100 SUs.

Performance criterion:
- Converging Speed
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Fig. 13. CDF of converging rounds T ,
using M = 4, N = 100,mi = 6.
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Fig. 14. Expectation of T vs. step ε,
using M = 4,mi = 6, N = {50, 100}.
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Fig. 15. Expectation of T vs. N , using
M = 4,mi = 6, ε = {10, 20}.

As can be seen from Figure 11, using fixed step, each
PO i raises his price in a constant speed ε, no matter how
many excess demand (i.e., di−mi) he experiences. In fact,
as any PO is in highly demand surplus (di À mi), he can
naturally adopt a large step to increase the converging
speed, while as in lowly demand surplus, he can adopt a
small step to guarantee the convergence. As mentioned
previously, each PO i can adaptively adjust his step ε
based on the number of excess demand and/or the prob-
ability of overshooting. In our simulations, we adopt a
simple adaptive step based on the excess demand: for
each PO i, the temporal step in each round is given by:

ε = eε · log2(1 + di −mi) (21)

where eε is the baseline of adaptive step.
Figure 12 presents the dynamic of the strategies of

both POs and SUs using adaptive step eε = 10. We can
see that, the auction using adaptive step converges to
the equilibrium (about 45th round) much faster than that
using fixed step, and the equilibrium prices achieved by
two schemes are the same, which means the adaptive
scheme increases the converging speed and meanwhile
effectively guarantees the convergence.

6.2 Converging Speed
We define converging rounds, denoted by T , as the num-
ber of rounds MAP used to converge to the equilibrium
state. Obviously, the converging speed is straightfor-
wardly related to the converging rounds. We show the
statistic characteristics of T in this subsection.

Figure 13 presents the cumulative distribution func-
tions (CDF) of the converging rounds (T ) in different
step schemes and step sizes. We can see from Figure
13 that T decreases with the increasing of step size ε.
For example, the probability of T ≤ 200 is 0%, 80% and
100% respectively for fixed steps ε = {5, 10, 20}. We can
further see that, for the same step size, the converging
rounds in adaptive step schemes is much smaller than
those in fixed step schemes. For example, the probability
of T ≤ 200 is 0% and 95% respectively for fixed step ε = 5
and adaptive step eε = 5.

Figure 14 presents the expectation of the converging
rounds (T ) vs different step sizes ε, from which we can
also see that T decreases with the increasing of step size
ε, and moreover, T and ε are to some extent in inverse
proportion. We can also see that using adaptive step
schemes, T can be reduced to about 30%-50% of those
using fixed step schemes with the same size.

Figure 15 presents the expectation of the converging
rounds (T ) vs different number of SUs (N ), from which
we can see that using fixed step schemes, T increases
rapidly with the increasing of the number of SUs, while
using adaptive step schemes, T increases very slowly as
the number of SUs increases. For example, using fixed
step ε = 5, T increases from 100 to 200 as N varies
from 50 to 250, while using adaptive step eε = 5, T
only increases from 50 to 60. We can also see that as
the number of SUs becomes greater, T converges to any
steady value. Thus MAP is scalable to the number of
SUs, and can be applied in the network with a large
number of SUs.

6.3 Convergence and Efficiency

MAP may converge to a W.E. or an S.E. depending on the
network configurations, and note that W.E. is usually in-
efficiency. In this subsection, we investigate the influence
of step scheme and step size on the equilibrium states
MAP achieved. We define the convergence probability (or
convergence for short) as the ratio of the number of
times MAP converging to an S.E. to the total number
of simulations, and the loss probability otherwise.

Figure 16 presents the loss probabilities in different
step schemes and step sizes, from which we can see
that the loss probability increases rapidly as the step size
increases, and loss probability in adaptive step schemes
is slightly higher than that in fixed step scheme with the
same step size. Note that, although the loss probability
substantially degrades as the step size increases, the
performance in terms of social income (efficiency) is kept
on a considerable level, as can be seen in follows.

Figure 17 presents the complementary cumulative dis-
tribution functions (CCDF) of the optimal social income
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Fig. 16. Loss probability vs. step ε,
using M = 4, N = 100,mi = 6.
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and the achieved social income (S) in different step
schemes and step sizes. The dashed curve denotes the
optimal social income (S∗) achieved by centralized al-
gorithms, which actually forms the theoretical upper-
bound of the achieved social income. From Figure 17
we can see that the social incomes achieved by MAP are
very close to the optimal one. For example, in the case
of 50 SUs, the probability of S ≥ 20000 is 85%, 84%, 80%
and 70% respectively for the centralized algorithm and
for the proposed MAP with fixed steps ε = {10, 50, 100}.

To provide a quantitative illustration of the degra-
dation of social income, we present the ratio of the
achieved social income (S) to the optimal social income
(S∗) in Figure 18, from which we can see that S decreases
slightly with the increasing of step size ε. Such a decrease
is inappreciable (less than 1%) in the case of ε ≤ 10, and
even in the case of ε = 100, the performance degradation
is less than 8%. Thus we can find that MAP achieve
an approximately optimal channel assignment within
tolerable iteration rounds.

6.4 Equilibrium Price and Profit Transfer

Profit transfer is essential since the actual achieved profit
of POs and SUs relies to a great extent on the profit
division. In this subsection, we investigate the equilib-
rium price and the profit division among POs and SUs.
Since the difference of social income in fixed step and
adaptive step schemes is not distinct, we only perform
the simulations in fixed step schemes in this subsection.

Figure 19 presents the CCDF of the equilibrium prices
(of POs) in different number of SUs using fixed step
ε = 10, from which we can see that the equilibrium
prices increases with the increasing of the number of
SUs. For example, for PO4, the probability of p4 ≥ 2250 is
40%, 70% and 90% respectively for N = {150, 200, 250}.
This is due to the fact that a higher demand usually
induces a more intensive competition among the buyers
and accordingly results in a higher market price, which
coincides with the common sense. Further, we can see
that the equilibrium prices of POs are different, i.e.,
p1 < ... < p4, due to the difference in bandwidth. This is

also rational because a better item may attract more SUs
and accordingly induces a more intensive competition.
Figure 20 presents the expectation of the equilibrium
prices in different number of SUs using fixed step ε = 10,
from which we can find a similar discovery.

Figure 21 presents the expectations of the achieved
social income (total profit) and the profit shared by POs
in different number of SUs, using fixed step ε = 10. Note
that we adopt the trading price solution as the pricing
mechanism, that is, each PO i charges the related SUs
his trading price (i.e., pi). The Nash bargaining solution,
which always divides equally the total profit among the
POs and SUs, is shown as the dashed stairs in Figure
21. As can be seen from the figure, the proportion of the
profit of POs in the total profit increases from about 50%
to 85%, as the number of SUs varies from 50 to 250. This
is due to the fact that the more SUs who competing for
channels, the more profit POs can gain by raising their
trading prices. In fact, as long as the number of SUs is
large enough, the POs will absorb almost all of the social
income. From Figure 21 we can also suppose that, in a
low demand network (e.g., N ≤ 50), the profits of POs
are less than those of SUs. In fact, as the total demand
is the double of the total supply, i.e., N ≈ 2

P
i mi, the

POs and SUs share approximately the same profits.

6.5 Throughput

We have studied in detail the characteristics of MAP
including the converging speed, convergence probabil-
ity, efficiency and profit division. Note that all above
contents are related to the mechanism of MAP, while
have nothing to do with the implementation of MAP in
practical networks. In this subsection, we implement the
MAP protocol in Section 5.6 in a simulation network, and
we analyze the performance of MAP in different network
configurations. Note that although we implement the
protocol in a simulation network, it can be easily applied
in a practical networks as adopting the appropriate
physical and MAC layers.

As mentioned previously, if the auction ends within
the period of auctioning course Ta, the remanent period
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of auctioning course is immediately turned into serving
course. While if the auction has not achieved the equi-
librium at the end of auctioning course, it will be forced
to terminate. Thus we can define the throughput in each
auction duration as:

C = S′ × (Ts + [Ta − T · Tr]+) (22)

where T is the last round of MAP, and S′ is the achieved
social income. Obviously that S′ = S if Ta ≥ T · Tr and
STa

otherwise, where S is the social income achieved by
MAP, and STa is the social income at time Ta where the
auction has not yet converged to equilibrium and each
PO i randomly chooses mi SUs for serving.

Figure 22 presents the average throughput of 1000
auctions vs different length of auctioning course (Ta),
from which we can see that the throughput in adap-
tive step schemes is always greater than that in fixed
step schemes. This is due to the fact that adaptive
step schemes reduce the converging rounds dramatically
with a tiny cost of social income degradation. Further we
can see that as Ta < 100 · Tr, the throughput is strongly
influenced by Ta, while as Ta > 100 · Tr, the throughput
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Fig. 23. Average throughput vs. step ε, using M = 4, N =
200,mi = 6.

remains almost unchanged. This can be explained as
follows. When Ta is small, the achieved social income S′

is like to be STa
which is closely related to the length of

auctioning course Ta. While as Ta becomes greater, S′ is
like to be S since the auction is likely to complete within
Ta. In particular, if Ta > T · Tr which means the auction
completes within Ta, the throughput will keep constant,
i.e., S × (Te − T · Tr), that is, it is independent of the
length of auctioning course. From Figure 22 we can also
find that the auction with large step is likely to achieve
this situation (e.g., Ta/Tr = 150 and 100 respectively for
the fixed steps ε = 10 and ε = 20).

Figure 23 presents the average throughput vs different
step schemes and step sizes, from which we can also see
that the throughput in adaptive step schemes is greater
than that in fixed step schemes. Further, for small Ta,
the throughput increases mildly with the increasing of
step size, while for large Ta, the throughput increases
more acutely. This can be explained as follows. For small
Ta, the auction is difficult to complete within Ta even
if the step size is large, thus the throughput increases
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Monopoly Spectrum Market Model

System Description:
- An PO (monopolist) sells his channels to multiple SUs.
- Each channel is associated with an attribute: quality, and a channel

can be traded in different qualities (Quality Discrimination).
- SUs are classified into multiple categories (types) according to their

preference for a given channel quality.
- The type of a particular SU is private information.

Objective: Maximizing the revenue of PO

s1PO

s4

s7

s2

s5

s6

s8
s3

Type I

Type II

Type III

s9

Figure: Monopoly Spectrum Market Model with 3 SU types.
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Quality Discrimination

Each channel can be traded in different quality q.
- For PO, the cost C(q) satisfies: C′(q) > 0, C′′(q) > 0.
- For SUs, the valuation V (θ, q) satisfies: (i) Vq(θ, q) > 0,

Vqq(θ, q) < 0, and (ii) Vθ(θ, q) > 0.

The monopolist select a set of qualities and a set of associated
prices for his products.

s1PO

s4

s2

s5

s6

s3

Type I
Type II

s1POs2

Type I
Type II

L
H

q
1
4

C(q)
6

10

V(I, q)
3
5

V(II, q)

s1PO

s4

s2

s3

Type I
Type II

{L} {H}Qualities
Prices

Revenue

{L, H}
{6}
10

{10} {6, 10}
12 10

{L} {H}Qualities
Prices

Revenue

{L, H}
{3}
12

{10} {3, 7}
12 14

{L} {H}Qualities
Prices

Revenue

{L, H}
{6}
10

{10} {3, 7}
12 10

Figure: An illustration of the optimal qualities and prices for PO in different system scenario.
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Quality-Price Contract Formulation [L. Gao, QPCtr ’09]

Since only one quality will be chosen by each SU, effectively the
PO will be assigning a quality qi and a price πi to each SU type
θi . Such a set of quality-price combinations is referred to as
quality-price contract, denoted by C = {qi , πi}.
A contract is feasible, iff the IC and IR constraints satisfy:

- Incentive Compatible (IC): V (θi , qi)− πi ≥ V (θi , qk )− πk , ∀k 6= i
- Individual Rational (IR): V (θi , qi)− πi ≥ 0

An optimal contract is defined as a feasible contract which
maximizes the revenue of PO.

- Revenue of PO: R =
P

i Ni(πi − C(qi)
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Feasibility of Contract

Suppose θ1 ≤ ... ≤ θN . A feasible contract C satisfies:
q1 ≤ ... ≤ qN and π1 ≤ ... ≤ πN with qi = qi+1 iff πi = πi+1.
L.1 qi > qj ⇔ πi > πj , and qi = qj ⇔ πi = πj .
L.2 θi > θj ⇒ qi ≥ qj .

Given q1 ≤ ... ≤ qN . The feasible price range can be obtained:
c.1 0 ≤ π1 ≤ V (θ1, q1), and
c.2 πk−1 + A ≤ πk ≤ πk−1 + B, for all k = 2, 3, ..., T , where

A = V (θk−1, qk )− V (θk−1, qk−1) and B = V (θk , qk )− V (θk , qk−1).
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Optimality of Contract

Given q1 ≤ ... ≤ qN . The best price set can be obtained:
c.1 π∗

1 = V (θ1, q1), and
c.2 π∗

k = π∗
k−1 + V (θk , qk )− V (θk , qk−1), for all k = 2, 3, ..., T .

Substitute the best prices into revenue R. The best quality set
can be obtained:

- ~q∗ = arg max~q R, where ~q = {q1, q2, ..., qN}.

q1 q2

V(θ3,q)

V(θ1,q)

Quality - q
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lu

at
io

n

q3

V(θ2,q)
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π̂4

π̂3

π̂2
x1

x1

Δ2

V0

x2

x2

Δ3

x3

x3

Δ4

Feasible Price Range
Best Price  πk        .^
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Figure: An illustration of the feasible price range and best price assignment.
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Continuous-SU-Type Model

System Modification:
- θ is a continue random variable with PDF f (θ) and CDF F (θ).

Given an increasing function q(θ). The best price function can be
obtained:

- π(θ)∗ = V (θ, q(θ))−
R θ

θs

q(x)
1+xq(x)

dx

Substitute the best price function π(θ)∗ into revenue R. The best
quality function q(θ)∗ can be derived.
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Simulation Results
Simulation parameters:

- 25 SU types and θi = 1, 2, ..., 25, ∀i = 1, 2, ..., 25.
- Case (a): Ni = i ; Case (b): Ni = 12; Case (c): Ni = 25− i + 1;

10

obtain the best price assignment (34). For example, if q(θ) =
θ, the best price assignment is π̂(θ) = 1

2 log(1+θ2)+ 1
2 log(1+

θ2
s). It is easy to validate that, for arbitrary θ ∈ Θ, the IC and

IR constraints hold, i.e., V (θ, q(θ)) − π̂(θ) ≥ V (θ, q(θ′)) −
π̂(θ′) and V (θ, q(θ))− π̂(θ) ≥ 0, ∀θ′ 6= θ.

Substituting (34) for the prices in (27), we can derive the
maximum utility of PO in a fixed quality assignment:

R∗{q(θ)} =
∫ θe

θs

(π̂(θ)− C (q(θ))) f(θ)dθ (35)

where π̂(θ) is given by (34).
Using integration by parts, we have:

∫ θe

θs

(∫ θ

θs

q(x)
1 + xq(x)

dx

)
f(θ)dθ

= F (θ)
∫ θ

θs

q(x)
1 + xq(x)

dx

∣∣∣∣∣

θe

θs

−
∫ θe

θs

F (θ)
q(θ)

1 + θq(θ)
dθ

=
∫ θe

θs

(1− F (θ)) · q(θ)
1 + θq(θ)

dθ

(36)

The last line follows because F (θs) = 0 and F (θe) = 1. Thus
we can rewrite (35) as follows:

R∗{q(θ)} =
∫ θe

θs

(
V (θ, q(θ))− C(q(θ))− 1− F (θ)

f(θ)
q(θ)

1 + θq(θ)

)
f(θ)dθ

(37)

We can easily find that (37) has the same structure as (24).
In fact, in a discrete model with infinite dense consumer types,
the term Nt converges to f(θt) and

∑T
i=t+1 Ni converges to

1− F (θt). Therefore, we can design the similar algorithm to
computed the best quality assignment. Formally, we present
the detail algorithm as follows:

1) initiate q̂(θ) = arg maxq G(θ, q), ∀θ ∈ Θ
2) while q̂(θ) is not feasible, do:

• find a infeasible region [a, b] ⊆ Θ
• set q̂(θ) = arg maxq

∫ b

a
G(θ, q)dθ, ∀θ ∈ [a, b]

where G(θ, q) is the integrand in (37), and an infeasible region
is defined as a subset of Θ, say [a, b], such that qθ(θ) ≤ 0,
∀θ ∈ [a, b], and q(a) > q(b).

VI. SIMULATION RESULTS

We implement the proposed quality-price contract in a
discrete-consumer-type model which contains of T = 25 SU
types. The set of SU types is Θ = {1, 2, ..., 25} and each
SU’s type is distributed with discrete probability distribution
z(θt) on the set Θ. The cost function of PO is defined as
C(q) = C0 + a · qb where C0 = 0.01, a = 2 and b = 1.2.
The minimum and maximum power level the PO supported
are Pmin = 0.01 and Pmax = 1, respectively.

We study the optimal contracts in 3 system scenarios which
differ from each other in the distribution of consumer types.
In cases (a) and (c), we assume that the larger type has higher
probability and lower probability, respectively, than smaller
type. In case (b), we assume that all consumer types are uni-
formly distributed on the set Θ. Without loss of generality, we
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Fig. 8. The quality assignments and price assignments in the optimal
contracts.

assume that in case (a) z(θt) = 1
D θt, (b) z(θt) = 1

D θT−t+1,
and (c) z(θt) = 1

T , where D =
∑T

t=1 θt.
Figure 8 presents the quality assignments and price as-

signments in the optimal contracts. The stellated curves, i.e.,
q(θ)∗ and π(θ)∗, denote the social optimal quality assignment
which maximizes the social surplus, and the related best price
assignment given by (20), respectively. The dotted curves
denote the optimal quality assignments and the best price
assignments in the optimal contracts for all scenarios (a), (b)
and (c). Note the hollow circles denote an aborted trading
process, i.e., quality Na (or zero price).

From Figure 8, we find that the quality assignment in
optimal contract is always less than the social optimal quality
assignment. From mathematical aspect, this can be shown
as follows. We notice that ∂Gt(θt,q)

∂q |q=q(θt)∗ < 0 since
∂Λt(θt,q)

∂q < 0 and ∂S(θt,q)
∂q |q=q(θt)∗ = 0, where q(θt)∗ is

the social optimal quality for type θt. Thus there is a quality
q = q(θt)∗ − ε such that Gt(θt, q) > Gt(θt, q(θt)∗) where ε
is a arbitrary small positive number. From economic aspect,
this can be explain as follows. For the propose of revenue
maximizing, the PO will reduce the qualities for the lower
types SUs, so as to reduce the interest of higher type SUs on
these qualities, and accordingly raise the price for the higher
type SUs. For example, in case (b), by reducing the qualities
of type θ10, the PO can assign a lower quality to type θ11

and meanwhile charge a much higher price from type θ11,
comparing to the solution for the social surplus maximization.
Further, we find that if the number (or probability) of lower
types SUs become smaller, e.g., case (a), the PO tends to
reduce more qualities on the low types SUs and charge higher
prices from the higher types SUs.

Figure 9 presents the social surplus and the revenues of
the PO in the optimal contracts. In this bar chart, So and
Ro denote the social optimal surplus, which can be obtained

Figure: The best quality set and price set in the optimal contract.
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