# Online Mechanism Design (I) —— Basics

Lin Gao



Network Communications and Economics Lab (NCEL)

Department of Information Engineering
The Chinese University of Hong Kong

#### **Outline**

- Examples of Online Scheduling Problems
  - The Socrates' Problem
  - The Persian Princess' Marriage Problem
- Online Mechanism Design
  - Mechanism Design
  - Roadmap to Online Mechanism Design
  - Online auction mechanism
- Conclusion

#### The Socrates' Problem



What is love?

Love is just like picking the largest wheat in a field ...



Socrates (469 BC – 339 BC)

Plato (424 BC – 348 BC)

#### The Socrates' Problem



#### The Socrates' Problem



#### Persian Princess' Marriage Problem



I will choose a husband for my princess from a given set of candidates ...



#### Persian Princess' Marriage Problem



Once accepting, game over (One chance).

#### Persian Princess' Marriage Problem



- Basic model
  - There is one item to be allocated to one potential demander;
  - A set of N demanders request sequentially with a random order;
  - $\triangleright$  The demanders have different valuations  $V_n$  for the item.
- Assumption
  - i.i.d. valuation  $V_n$
- Objective
  - Allocate the item to the highest valuation demander.

#### Key features

- No future information
  - Can only see the wheat on the side (the proposing man);
- Opportunity is fleeting (Real-time decision)
  - Can only pick the wheat on the side (accept the proposing man), and no turn back;
- No withdrawing (No preemption)
  - One chance: Once picking (accepting), game over.

#### More features

No a-priori stochastic information

- Objective
  - Allocate the item to the highest valuation demander.
- We cannot guarantee to achieve this objective with 100%;
- Or, we can only achieve this objective with a certain probability.

What is the largest probability we can achieve?

Can we find a scheduling rule to achieve this probability?

The largest probability

The largest probability (of allocating the item to the highest valuation demander) is:

1/e = 1/2.718 = 36.79%

- Optimal scheduling rule
  - Suppose w.l.o.g demander n requests at the step n.
  - At step n: demander n with valuation  $V_n$ 
    - Case (i): there exists an  $V_{i,i < n}$  such that exists  $V_i > V_n$
    - Case (ii):  $V_n$  is the largest valuation among all requested n demander



From which step (called critical step) on, a demander n satisfying case (ii) will be accepted?

- Optimal scheduling rule
  - Suppose a critical step k
    - Before step k: Reject all demanders 1,2,...k
    - From step k+1: Accept the first demander satisfying case (ii)



What is the optimal critical step *k*?

- Optimal scheduling rule
  - Given a critical step k
    - ▶ (1) Prob = 0, If the largest valuation is within  $V_{i, i=1,...,k}$
    - $\triangleright$  (2) Prob = 1, If the largest valuation is  $V_{k+1}$
    - (3) Prob = k/(k+1), If the largest valuation is  $V_{k+2}$ 
      - ▶ The largest valuation among all previous k+1 demanders is within  $V_{i, i=1,...,k}$
    - (4) Prob = k/(k+2), If the largest valuation is  $V_{k+3}$ 
      - The largest valuation among all previous k+2 demanders is within V<sub>i, i=1,...,k</sub>
    - **...** ...
    - Finally, Prob = k/(N-1), If the largest valuation is  $V_N$ 
      - ▶ The largest valuation among all previous N-1 demanders is within  $V_{i, i=1,...,k}$

$$P(k) = 1/N * [k/k + k/(k+1) + k/(k+2) + ... + k/(N-1)]$$
  
= k/N \* [1/k + 1/(k+1) + 1/(k+2) + ... + 1/(N-1)]

- Optimal scheduling rule
  - The optimal critical step  $k^*$

$$k^* = \underset{k}{\text{arg max }} P(k)$$



$$k^* = N/e = N \times 0.3679$$
  
 $P(k^*) = 1/e = 36.79\%$ 

Test the probability: 36.79%





Discussion

If there is no ...

- ► (1) No future information
- ► (2) Opportunity is fleeting (Real-time decision)
- (3) No withdrawing (No preemption)
- ► (4) No a-priori stochastic information

Further discussion

In wireless network, online scheduling problems may be ...

- (1) Objective: Expected overall valuation (social welfare)
- (2) A-priori stochastic information: {Part, Complete}
- ► (3) No future information
- (4) Opportunity is fleeting (Real-time decision)
- ► (5) Withdraw (Preemption): {Yes, No}

#### **Outline**

- Examples of Online Scheduling Problems
  - ► The Socrates' Problem
  - The Persian Princess' Marriage Problem
- Online Mechanism Design
  - Mechanism Design
  - Roadmap to Online Mechanism Design
  - Online auction mechanism
- Conclusion

#### Why Mechanism Design

- An implied assumption in the scheduling problem
  - ► The demander's valuation is observable at the time the demander requests.
    - E.g., Plato can see the wheat on his side at every step;
    - E.g., Princess can see the proposing man at every step.
- In many cases, this assumption may be too strong.
  - The demander's valuation cannot be observed by others. (also called private information, information asymmetry)
- Purpose of mechanism design
  - To achieve a desirable scheduling or allocation under information asymmetry.

#### Why Mechanism Design

Information Asymmetry in Persian Princess' Marriage Problem



#### Why Mechanism Design

- Incentive Compatibility
  - An incentive compatible mechanism provides the incentive for demanders truthfully report their private information.
- Efficiency Social Welfare Maximization
  - An efficient mechanism maximizes the expected social welfare (the total valuation of all scheduled users).
- Optimality Revenue Maximization
  - An optimal mechanism maximizes the expected revenue (the total payment of all scheduled users) of the mechanism designer.

## Mechanism Design vs Scheduling

#### Mechanism Design

#### **Scheduling Rule**

Achieve desirable scheduling or allocation based on the users' truthful report.

#### Payment Rule

Provide incentive for users truthfully reporting their private information



- Single-item Offline Scheduling
  - Maximizing the social welfare
    - Simple searching



Classic VCG Mechanism, e.g., 2<sup>nd</sup>-Price Auction





- Single-item Online Scheduling
  - Maximizing the successful probability
    - Learning-before-scheduling
- Mechanism Design
  - Question ?





- Single-item Online Scheduling
  - Maximizing the social welfare
    - Greedy Scheduling
- Mechanism Design
  - Question ?





- Knapsack Problem
  - Maximizing the social welfare s.t. sum(Di) ≤ C
    - NP-hard
- Mechanism Design
  - Classic VCG Mechanism





- Online Knapsack Problem
  - ► Maximizing the social welfare s.t. sum(Di) < C</p>
    - [Deniz Dizdar 2009]
- Mechanism Design
  - [Deniz Dizdar 2009]





- "Power" Allocation Problem
  - Maximizing the social welfare s.t. sum(Di) ≤ C
    - Water-filling
- Mechanism Design
  - Question ? [Hint: VCG]





- Online "Power" Allocation
  - Maximizing the social welfare s.t. sum(Di) ≤ C
    - [Ishai Menache 2012]
- Mechanism Design
  - [Ishai Menache 2012]





- Matching Problem
  - Maximizing the social welfare
    - MWIS (NP-hard)
- Mechanism Design
  - Classic VCG Mechanism





- Generalized Matching Problem
  - Maximizing the social welfare
    - MWIS (NP-hard)
- Mechanism Design
  - Classic VCG Mechanism





- Online Matching Problem
  - Maximizing the social welfare
    - [Mohammad T. Hajiaghayi 2005 EC]
- Mechanism Design
  - [Mohammad T. Hajiaghayi 2005 EC]





#### **Outline**

- Examples of Online Scheduling Problems
  - ► The Socrates' Problem
  - ► The Persian Princess' Marriage Problem
- Online Mechanism Design
  - Mechanism Design
  - Roadmap to Online Mechanism Design
  - Online auction mechanism
- Conclusion

## **Online Auction Design**

- Mohammad T. Hajiaghayi, 2005 EC.
- The Model
  - Private information: Vi, Di, [Ai, Bi]



#### **Conclusion**

- Online Scheduling Problem
- Online Mechanism Design
- Future: Online Auction Design

## Thank you!