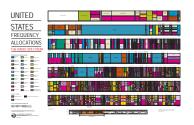
ContrAuction: An Integrated Contract and Auction Design for Dynamic Spectrum Sharing

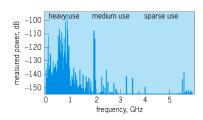
Lin Gao

Network Communications and Economics Lab (NCEL)
Information Engineering Department
The Chinese University of Hong Kong

Joint work with Jianwei Huang, Ying-Ju Chen and Biying Shou

Background



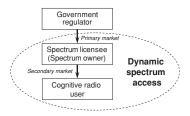


Frequency allocation (USA): Over-crowed

Spectrum utilization (Berkeley): Inefficient

- Dynamic Spectrum Access
 - ► Goal: Increase spectrum efficiency and alleviate spectrum scarcity
 - Basic idea: Allowing unlicensed users to access licensed spectrum
 - ► Requirement: Provide *economic incentive* for both primary spectrum owners and cognitive radio users ⇒ *Secondary Spectrum Market*

Secondary Spectrum Market



Spectrum primary market vs secondary market [E. Hossain, D. Niyato, Z. Han '09]

- Secondary Spectrum Market
 - Seller: Primary spectrum owner (PO)
 - ▶ Buyer: Cognitive radio user (secondary user, SU)
 - ▶ Item: Spectrums licensed to the PO
 - Scheme: Short-term vs Long-term
 - ★ e.g., in a slot-by-slot manner (millisecond or second scale)
- We focus on a *monopoly* secondary spectrum market (1 PO).

Hybrid Market Structure

- Hybrid Market Structure
 - Spot Market
 - Buyers compete openly for spectrums in a real-time and on-demand manner (e.g., through an auction)
 - **★** Flexibility: Allow SUs to compete for spectrums based on their real-time demands ⇒ *Burst traffic* or *Elastic* services (e.g., file transferring)
 - Future Market
 - * Buyers enter into certain aforehand agreement (called a contract, specifying the spectrum demand, price, etc.) with the seller
 - ★ Certainty: Insures SUs (PO) against future uncertainty in market supply (demand) ⇒ Period traffic or Inelastic services (e.g., Netflix video streaming)
- Main advantage
 - Flexible in achieving desirable QoS differentiations

Our Contribution

Problem: PO's Profit Maximization

- How should a monopoly PO sell his spectrums among contract users and spot market users to maximize his overall profit?
- Novelty and main contribution
 - New modeling and solution technique
 - The first work tackling secondary spectrum trading with the coexistence of future and spot markets
 - Multiple information scenarios
 - Studying the optimal selling mechanisms under both information symmetry and asymmetry

The Network Model

- Network Model
 - One primary spectrum owner (PO)
 - ★ Transmission protocol: *Slotted* (e.g., GSM, WCDMA, and LTE)
 - **★** Spectrum opportunity: *Idle spectrum* (unused by licensed holders)
 - * Sharing scheme: *Short-term*, i.e., in a slot-by-slot manner
 - Multiple secondary users (SUs)
 - ★ Unlicensed: Eager for spectrums
 - ★ Valuation: Benefit from using some spectrums
 - **★** Service type: *Elastic* and *Inelastic* ⇒ Spot and Future market
 - ► Idle Spectrum
 - **★** *Un-reservable* ⇒ Allocate in real-time
 - **★** *Dynamic* across time ⇒ Not know future information
 - ★ Heterogeneous among users ⇒ User valuation diversity
 - Each spectrum can only be used by one SU at the same time (Spatial reuse is not considered in this work)

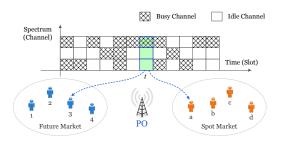
The Market Model

- Hybrid Spectrum Market Model
 - ▶ One seller (PO) Monopoly market
 - * Trading scheme: *Short-term*, i.e., in a slot-by-slot manner
 - ★ S: Idle spectrums in a specific time period (say T slots)
 - ▶ M: Spot purchasing buyers (SUs) in the spot market
 - ★ Compete *openly* for spectrums only when needed
 - ★ Price based on the real-time valuation and market competition
 - * v_m : Valuation of spot market user $m \Rightarrow \text{Maximal willingness-to-pay}$
 - N: Contract buyers (SUs) in the future market
 - * Pre-defined spectrum demand, payment and penalty (in one period)
 - **★** $\mathbb{C}_n \triangleq \{B_n, D_n, \widehat{P}_n\}$: Contract signed by user $n \in \mathcal{N}$
 - **★** u_n : Valuation of contract user $n \Rightarrow \text{Long-term satisfaction}$

The Network Information

- Network Information
 - ► All SUs' valuations for any idle spectrum
 - ★ Denoted by $\theta \triangleq (v_1, ..., v_M, u_1, ..., u_N) Random Vector$
 - Complete network information Not practical!
 - ***** The PO knows the information θ of every spectrum in advance
 - ► Incomplete network information √
 - * The PO does not know the precise information θ of every future spectrum, but only the *stochastic* distribution of θ , i.e., $f(\theta)$
 - * Symmetric: The PO can observe the SUs' realized valuations for the current spectrum (but not those for the future spectrums)
 - * Asymmetric: The PO cannot observe the SUs' realized valuations for the current spectrum
 - ★ Information Symmetry/Asymmetry ⇒ Spot Trading Mechanism

The Model – An example

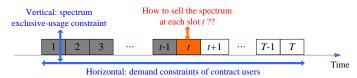


Example 1: hybrid spectrum market [L. Gao, J. Huang, etc. 12']

An example

- ▶ Seller's supply: $S = \{c_1, ..., c_{18}\}$ in total T = 12 slots
- ▶ Spot market: $\mathcal{M} = \{a, b, c, d\}$
- Future market: $N = \{1, 2, 3, 4\}$
- Two idle spectrums at time T = t are sold to contract buyer 3 and spot market buyer a, respectively.

Problem Description and Approach



How to determine the allocation and charge for every spectrum in real-time under incomplete information?

- Approach Infinite-Dimensional Optimization
 - Every information realization $\theta \Rightarrow$ Allocation strategy $\mathbf{A}(\theta)$

$$\mathbf{A}(\theta) \triangleq (a_0(\theta), a_1(\theta), ..., a_N(\theta)), \ \forall \theta \in \mathbf{\Theta}$$

- ★ $a_0(\theta) \in [0,1]$: allocation probability to the spot market
- ★ $a_n(\theta) \in [0,1]$: allocation probability to the contract user $n \in \mathcal{N}$
- Constraints
 - ★ User-coupling constraint: $\sum_{n=0}^{N} a_n(\theta) \leq 1$, $\forall \theta \in \Theta$
 - * Time-coupling constraint: $\int_{\theta} a_n(\theta) f(\theta) d\theta < \frac{D_n}{S} \Rightarrow Penalty, \forall n \in \mathcal{N}$

Lin Gao (NCEL) ContrAuction 10 / 25

Problem Formulation

Problem Formulation – PO's Profit Maximization

$$\label{eq:maximize} \begin{split} & \underset{\mathbf{A}(\theta),\forall \theta}{\text{maximize}} & & \mathbb{E}[R_0] + \sum_{n=1}^{N} \mathbb{E}[R_n] - \sum_{n=1}^{N} w_n \mathbb{E}[C_n], \\ & \text{subject to} & & a_n(\theta) \in [0,1], \ \forall n \in \{0,1,...,N\}, \forall \theta \in \mathbf{\Theta}; \\ & & & \sum_{n=0}^{N} a_n(\theta) \leq 1, \ \forall \theta \in \mathbf{\Theta}. \end{split}$$

- ▶ $\mathbb{E}[R_0] \triangleq S \int_{\theta} a_0(\theta) r_0(\theta) f(\theta) d\theta$: Expected profit from the spot market
 - * $r_0(\theta)$: PO's maximum profit as selling a spectrum θ on the spot market, depending on spot trading mechanism
- ▶ $\mathbb{E}[R_n] \triangleq B_n [D_n \mathbb{E}[d_n]]^+ \widehat{P}_n$: Expected profit from the contract user n
- ▶ $\mathbb{E}[C_n] \triangleq S \int_{\theta} a_n(\theta) c_n(\theta) f(\theta) d\theta$: Expected cost from the contract user n
 - * w_n : weight of contract user n's long-term satisfaction loss (cost)
- ▶ $\mathbb{E}[d_n] \triangleq S \int_{\theta} a_n(\theta) f(\theta) d\theta$: Expected number of spectrums to contract user n

Information Symmetry

- The PO can observe the SUs' realized valuations at each time slot
 - Optimal Pricing: Charging whatever the spot market will bear

Spot Trading Mechanism – Perfect Price Discrimination

$$r_0(\theta) = Y_M^1(\theta) \triangleq \max_{m \in \mathcal{M}} v_m$$

- Allocate each spectrum to the highest valuation user
- Charge the allocated user a price exactly same as its valuation

ContrAuction 12 / 25

Equivalent Transform

- Condition I (Full Spectrum Utilization)
 - $\sum_{n=0}^{N} a_n^*(\theta) = 1 \Rightarrow a_0^*(\theta) = 1 \sum_{n=1}^{N} a_n^*(\theta)$
- Condition II (No Contract Overflow)
 - $\blacktriangleright \ \mathbb{E}[d_n] \triangleq S \int_{\theta} a_n(\theta) f(\theta) d\theta \leq D_n \Rightarrow \mathbb{E}[R_n] \triangleq B_n (D_n \mathbb{E}[d_n]) \cdot \widehat{P}_n$

Equivalent Optimization Problem

subject to (i) $a_n(\theta) \ge 0, \forall n \in \mathcal{N}, \forall \theta \in \Theta$

(ii)
$$\sum_{n=1}^{N} a_n(\theta) \leq 1, \ \forall \theta \in \mathbf{\Theta}$$

(iii)
$$\mathbb{E}[d_n] \leq D_n, \ \forall n \in \mathcal{N}$$

- ▶ $\mathbf{A}_0(\theta) \triangleq \mathbf{A}(\theta)/\{a_0(\theta)\} = (a_1(\theta), ..., a_N(\theta))$: New allocation strategy
- $\vdash H_n(\theta) \triangleq -r_0(\theta) + \widehat{P}_n w_n c_n(\theta)$
- $F \triangleq S \cdot \int_{\theta} r_0(\theta) f(\theta) d\theta + \sum_{n=1}^{N} (B_n \widehat{P}_n D_n)$: Constant

Primal-Dual Method

- Dual Variables: $\mu_n(\theta)$, $\eta(\theta)$, λ_n , $\forall n \in \mathcal{N}$
- Lagrangian:

$$\mathbb{L} \triangleq \int_{\theta} \mathcal{L}(\theta) f(\theta) d\theta$$

Sub-Lagrangian – $\mathcal{L}(\theta)$

$$\mathcal{L}(\theta) \triangleq F + S \sum_{n=1}^{N} H_n(\theta) a_n(\theta) + \sum_{n=1}^{N} \mu_n(\theta) a_n(\theta) + \frac{\eta(\theta)}{1 - \sum_{n=1}^{N} a_n(\theta)} + \sum_{n=1}^{N} \frac{\lambda_n(D_n - S \cdot a_n(\theta))}{1 - \sum_{n=1}^{N} a_n(\theta)}$$

Lin Gao (NCEL) ContrAuction 14 / 25

First-order Derivative of $\mathcal{L}(\theta)$

Marginal Profit

$$\mathcal{L}^{(n)}(\theta) \triangleq \frac{\partial \mathcal{L}(\theta)}{\partial a_n(\theta)} = S \cdot H_n(\theta) + \mu_n(\theta) - \eta(\theta) - S \cdot \lambda_n$$

Mantle Marginal Profit

$$\mathcal{J}_1^{(n)}(\theta) \triangleq S \cdot H_n(\theta) - \eta(\theta) - S \cdot \lambda_n$$

Core Marginal Profit

$$\mathcal{J}_2^{(n)}(\theta) \triangleq S \cdot H_n(\theta) - S \cdot \lambda_n$$

- $\blacktriangleright \mathcal{L}^{(n)}(\theta)$: marginal profit, the first-order derivative of $\mathcal{L}(\theta)$ with respect to $a_n(\theta)$
- $\mathcal{J}_1^{(n)}(\theta) = \mathcal{L}_1^{(n)}(\theta) \mu_n(\theta)$: eliminate $\mu_n(\theta)$ from the marginal profit
- $\mathcal{J}_2^{(n)}(\theta) = \mathcal{L}^{(n)}(\theta) \mu_n(\theta) + \eta(\theta)$: eliminate $\mu_n(\theta)$ and $\eta(\theta)$ from the marginal profit

Lin Gao (NCEL) ContrAuction 15 / 25

First-order Condition and Duality Principle

Optimal Primary Solution – $a_n^*(\theta)$

$$\mathbf{a}_{\mathbf{n}}^{*}(\boldsymbol{\theta}) = \begin{cases} 0, & \mathcal{L}^{(n)}(\boldsymbol{\theta}) < 0 \\ 1, & \mathcal{L}^{(n)}(\boldsymbol{\theta}) > 0 \\ \delta \in [0, 1], & \mathcal{L}^{(n)}(\boldsymbol{\theta}) = 0 \end{cases}$$

Dual Constraints

- $\bullet \ \mu_n(\theta) \geq 0, \ a_n^*(\theta) \geq 0, \ \mu_n(\theta)a_n^*(\theta) = 0, \ \forall n \in \mathcal{N}, \theta \in \Theta$
- $\bullet \ \eta(\theta) \geq 0, \ 1 \sum_{n=1}^{N} a_n^*(\theta) \geq 0, \ \eta(\theta) \left(1 \sum_{n=1}^{N} a_n^*(\theta)\right) = 0, \ \forall \theta \in \Theta$
- $\bullet \ \ \, \boldsymbol{\lambda_n} \geq 0, \ \ \, \boldsymbol{D_n} \mathbb{E}[d_n] \geq 0, \ \ \, \boldsymbol{\lambda_n} \big(\boldsymbol{D_n} \mathbb{E}[d_n] \big) = 0, \ \ \, \forall n \in \mathcal{N}$
- Duality Principle
 - ► Finding optimal primary solution ⇔ Finding optimal dual variables satisfying dual constraints

Optimal Dual Variables – $\mu_n^*(\theta)$, $\eta^*(\theta)$

Lemma 3 – Optimal conditions for $\mu_n^*(\theta)$

$$\begin{cases} \mathcal{J}_{1}^{(n)}(\theta) \geq 0 \Rightarrow \mu_{n}^{*}(\theta) = 0 \\ \mathcal{J}_{1}^{(n)}(\theta) < 0 \Rightarrow \mu_{n}^{*}(\theta) \in [0, |\mathcal{J}_{1}^{(n)}(\theta)|] \end{cases}$$

• $\mu_n^*(\theta)$ never changes the sign of marginal profit: $\operatorname{sign}\{\mathcal{L}^{(n)}(\theta)\} \equiv \operatorname{sign}\{\mathcal{J}_1^{(n)}(\theta)\}$

Lemma 4 – Optimal conditions for $\eta^*(\theta)$

$$\begin{cases} K_1(\theta) \geq 0 \Rightarrow \eta^*(\theta) \in [\max(0, K_2(\theta)), & K_1(\theta)] \\ K_1(\theta) < 0 \Rightarrow \eta^*(\theta) = 0 \end{cases}$$

- $K_1(\theta) \triangleq \max_{n \in \mathcal{N}} \mathcal{J}_2^{(n)}(\theta)$: the highest core marginal profit
- ▶ $K_2(\theta) \triangleq \max_{n \in \mathcal{N}/n_1} \mathcal{J}_2^{(n)}(\theta)$: the second highest core marginal profit ▶ $\eta^*(\theta)$ reduces identically all marginal profits such that at most one is positive

Lin Gao (NCEL) ContrAuction 17 / 25

Optimal Dual Variables – λ_n^*

Lemma 6 – Optimal conditions for λ_n^*

$$\lambda_n^* = \max \left\{ 0, \quad \arg_{\lambda_n} S \cdot \int_{\theta \in \Theta_n^+(\Lambda_{-n}^*, \lambda_n)} f(\theta) d\theta = D_n \right\}$$

- $\bullet \ \ \Theta_n^+ \triangleq \big\{\theta | \mathcal{J}_2^{(n)}(\theta) > 0 \& \mathcal{J}_2^{(n)}(\theta) > \max_{i \neq n} \mathcal{J}_2^{(i)}(\theta) \big\} : \text{ spectrums to contract user } n.$
- λ_n^* shifts vertically user n's marginal profit to meet demand constraint $\mathbb{E}[d_n] \leq D_n$

Optimal solution $-a_n^*(\theta)$

$$a_n^*(\theta) = 1 \Leftrightarrow \mathcal{J}_2^{(n)}(\theta) \geq 0 \& \mathcal{J}_2^{(n)}(\theta) \geq \max_{i \neq n} \mathcal{J}_2^{(i)}(\theta)$$

Intuitively, allocate each spectrum with θ to the contract with *highest* and *positive* core marginal profit $\mathcal{J}_2^{(n)}(\theta)$

Lin Gao (NCEL) ContrAuction 18 / 25

Solution Summary (Information Symmetry)

Optimal Selling Mechanism – Perfect Price Discrimination

- Price definition
 - $\triangleright p_m(\theta) \triangleq v_m$ for spot market user $m \in \mathcal{M}$
 - $p_n(\theta) \triangleq \widehat{P}_n w_n c_n(\theta) \lambda_n^*$ for contract user $n \in \mathcal{N}$
- Allocation strategy
 - Allocate each spectrum θ to the *highest price* user
- Charge scheme
 - Charge user's price or valuation v_m if a spot market user m wins
 - Charge a pre-defined price if a contract user n wins
- Comments
 - Contract user's price depends on penalty rather than payment;
 - ▶ Shadow price λ_n^* reduces contract user n's price to meet demand constraint;

Information Asymmetry

- The PO cannot observe the SUs' realized valuations at each time slot
 - ► Incentive compatible mechanism ⇒ Truth-telling of spot market users

Spot Trading Mechanism – VCG-based Auction

$$r_0(\theta) = Y_M^2(\theta) \triangleq \max_{m \neq m^*} v_m$$

- Allocate each spectrum to the highest bid user
- Charge the allocated user a *critical value* (e.g., the second highest bid in a second-price auction)

ContrAuction 20 / 25

Auction in Hybrid Market

- Challenge I
 - ▶ How to involve contract users into the spot auction?
 - * Not willing to be involved in the competition of an auction
 - * Not able to be involved in the competition of an auction
 - Solution ContrAuction
 - ★ The PO acts as virtual bidders on behalf of the contracts
 - ★ Mechanism is *transparent* to the contract users
- Challenge II
 - ► How to determine the optimal bid for each contract?
 - ★ No external relevance: each contract user's bid is irrelevant to other users' information ⇒ ensure truthfulness of spot market users
 - **★** Efficiency constraint: achieve the same spectrum allocation as in information symmetry ⇒ outcome is transparent to the contract users

ContrAuction and Optimal Bidding Rule

Integrated Contract and Auction Design - ContrAuction

- An VCG-based Auction as the underlying spot trading mechanism
- Basic idea: the PO acts as virtual bidders on behalf of the contracts
 - Mechanism is truthful to the spot market users
 - ▶ Mechanism and Outcome are *transparent* to the contract users

Optimal Bidding Rule (under Efficiency Constraint)

$$b_n^*(\theta) \triangleq \widehat{P}_n - w_n c_n(\theta) - \frac{\lambda_n^*}{n}$$

- $b_n^*(\theta)$: contract user n's own information and a shadow price λ_n^* given by Lemma 6
- ▶ Efficiency: achieves the *same allocation* as in information symmetry
- Optimality: maximizes the PO's profit among all efficient mechanisms.

Lin Gao (NCEL) ContrAuction 22 / 25

Solution Summary (Information Asymmetry)

Optimal Selling Mechanism – ContrAuction

- Bidding strategy
 - $b_m(\theta) \triangleq v_m$ for spot market user $m \in \mathcal{M}$ (truthfulness)
 - $b_n(\theta) \triangleq \widehat{P}_n w_n c_n(\theta) \lambda_n^*$ for contract user $n \in \mathcal{N}$
- Allocation strategy
 - Allocate each spectrum θ to the *highest bid* user
- Charge scheme
 - Charge the second highest bid if a spot market user wins
 - Charge a pre-defined price if a contract user wins
- Comments
 - Contract user's bid is same as the "price" in information symmetry;
 - Contract user's bid has exactly the same effect as a reserve price.

Conclusion and Future Work

Conclusion

- Secondary spectrum trading with the coexistence of future and spot markets;
- ► PO's profit maximization under incomplete information;
- ► Optimal selling mechanisms under both information symmetry and asymmetry.
- Future Work
 - ► Spatial Reuse: interference protocol model and physical model
 - ▶ Without efficiency constraint: optimal ContrAuction mechanism

Contact

Dr. Jianwei Huang

ncel.ie.cuhk.edu.hk

Lin Gao (NCEL) ContrAuction 25 / 25