Economics of TV White Space Networks

Yuan Luo, Lin Gao, and Jianwei Huang

Network Communications and Economics Lab (NCEL) Information Engineering Department The Chinese University of Hong Kong (CUHK), Hong Kong

Outline

Mobile Data Explosion

Global Mobile Data Traffic, 2014 to 2019 (from Cisco VNI)

- Mobile data traffic explosive growth: 57% annual grow rate
- Need more spectrum resource to support wireless broadband services.

Radio Spectrum Scarcity

Frequency Allocation Chart in USA (from NITA)

• Spectrum resource is very limited.

Spectrum Usage Inefficiency

Measured Spectrum Occupancy in Chicago and New York City

Licensed radio spectrums are under-utilized (on average < 25%)

Dynamic Spectrum Sharing (DSS)

- A promising approach to provide more spectrum resources
- Enable unlicensed devices to share the licensed spectrum bands in an opportunistic manner;
- Improve the spectrum utilization efficiency without affecting the licensed operations;

An Example of DSS: Sharing TV White Space

- Under-utilized TV bands
 - Licensed to certain TV licensee but not fully utilized;
 - Example: The band "C" is licensed within the disk area (granted and exclusive usage).
- Unassigned TV bands
 - Not licensed to any TV licensee at a certain location;
 - Example: The band "C" is not licensed out of the disk area (license-exempt and shared usage).

Advantages of Using TV White Space

- Why TV White Space?
 - Wide Bandwidth
 - ★ More than 280 MHz in USA
 - Excellent Propagation
 - ★ Low frequency band
 - ★ Strong penetration capability
 - ★ Large transmission distance
- Potential Application Super WiFi
 - Rural broadband/backhaul
 - Sensor networks
 - Indoor video distribution
 - M2M communications

Realization of TV White Space Network

- Database-Assisted TV White Space Network
 - Unlicensed devices obtain the available TV white space information through querying a certified database (instead of only replying on sensing);
- Supported by many regulators, standards bodies, industrial organizations, and major IT companies;
 - Regulators: FCC in USA, Ofcom in UK, IDA in Singapore, IC in Canada, etc.;
 - Standards: IEEE 802.22, IEEE 802.11af;
 - Companies: Google, Microsoft, SpectrumBridge, etc.

Database-Assisted TV White Space Network

- Database updates TV licensees information periodically;
- Database helps unlicensed users identify available TV white spaces;
 - Step 1: White space devices report their locations to a database;
 - Step 2: Database returns the available white spaces at a given location;

Architecture of Database-Assisted TV White Space Network (by FCC, Ofcom)

Unlicensed Users: White Space Device (WSD)

• Ofcom Framework (UK): Master and Slave WSDs

- Master WSD: Geo-localization capability (Communicate directly with a database for available TV white space)
- Slave WSD: No requirement of geo-localization capability (Served and under the control of a master WSD)
- FCC Framework (USA): Fixed and Portable WSDs
 - Fixed WSD: 30 meter height limit, fixed location (Communicate directly with a database for available TV white space)
 - Portable WSD: No height limit, mobility (Mode 2: Communicate directly with a database; Mode 1: Served and under the control of a mode 2 device)

Regulatory Policy

- Policy of FCC in USA
 - ► (A) Nov 2008, FCC approved the unlicensed use of TV white spaces;
 - (B) Sep 2010, FCC determined the final rules for the use of TV white space (advocating database and removing sensing);
 - (C) Jan 2011, FCC conditionally designated 9 companies (including Google, Spectrum Bridge, Microsoft) to serve as geo-location white space databases in USA.

Regulatory Policy

Policy of Other Countries

- ► (A) 2008, USA approved the unlicensed use of TV white spaces
- ► (B) 2011, Europe published a draft rule for using TV white spaces
- ► (C) 2014, Singapore approved the unlicensed use of TV white spaces
- (D) 2015, UK and Canada approved the unlicensed use of TV white spaces

Trials & Demos

- Trial Systems in North America
 - ▶ (1) Oct 2009, the WhiteFi network developed by Microsoft Research;
 - (2) May 2011, a commercial Super Wi-Fi network was developed in Calgary based WestNet City;
 - (3) Jan 2012, the United States first public Super Wi-Fi network was developed in Wilmington based SpectrumBridge;
 - (4) July 2013, West Virginia University launches the first campus Super WiFi network

Trials & Demos Summary

TV white spaces trials and demonstrations (from Microsoft)

• TV white space network is being actively explored in many countries.

Leading Countries: USA and UK

Outline

• Major Technical Challenges

- TVWS Availability Computation (for Database)
 - How to accurately computes the available TV channels in a particular location [Dawei Chen et al. 2009] [Tan Zhang et al. 2014][Xuhang Ying et al. 2013]
 - * Most important technical issue, Different in UK and USA

• Major Technical Challenges

- TVWS Availability Computation (for Database)
 - How to accurately computes the available TV channels in a particular location [Dawei Chen et al. 2009] [Tan Zhang et al. 2014][Xuhang Ying et al. 2013]
 - * Most important technical issue, Different in UK and USA
- WSD Development
 - * How to design and standardize white space device (WSD)

• Major Technical Challenges

- TVWS Availability Computation (for Database)
 - How to accurately computes the available TV channels in a particular location [Dawei Chen et al. 2009] [Tan Zhang et al. 2014][Xuhang Ying et al. 2013]
 - * Most important technical issue, Different in UK and USA
- WSD Development
 - * How to design and standardize white space device (WSD)
- Resource Management and Optimization (for Database and WSD)
 - ★ How to deploy and optimize a database-assisted TV white space network [Xiaojun Feng et al. 2011]

• First Consideration — Interference

- Ensure low probability of harmful interference to licensees
 - ★ Digital Terrestrial Television (DTT) Services
 - * Programme Making and Special Events (PMSE) Usage

• First Consideration — Interference

- Ensure low probability of harmful interference to licensees
 - ★ Digital Terrestrial Television (DTT) Services
 - * Programme Making and Special Events (PMSE) Usage

Information Required

- WSD Location
 - * Master devices are required to report their locations (with error);
 - * Slave devices are not required to report their location.

• First Consideration — Interference

- Ensure low probability of harmful interference to licensees
 - ★ Digital Terrestrial Television (DTT) Services
 - * Programme Making and Special Events (PMSE) Usage

Information Required

- WSD Location
 - Master devices are required to report their locations (with error);
 - Slave devices are not required to report their location.
- DTT/PMSE Location
 - ★ Represent by spatial pixels;
 - * Spatial resolution (100 \times 100 m²) geographic squares (pixels).

• First Consideration — Interference

- Ensure low probability of harmful interference to licensees
 - Digital Terrestrial Television (DTT) Services
 - * Programme Making and Special Events (PMSE) Usage

Information Required

- WSD Location
 - * Master devices are required to report their locations (with error);
 - Slave devices are not required to report their location.
- DTT/PMSE Location
 - Represent by spatial pixels;
 - * Spatial resolution (100 \times 100 m²) geographic squares (pixels).
- DTT/PMSE Channel
 - ★ The operational channels of DTT/PMSE devices.

• DTT Protection

- Estimate the WSD's potential interference to DTT;
- Compute the available TV white space and maximum transmission power for WSDs (with location uncertainty);
 - ★ Locations of DTT
 - ★ Possible locations of WSDs
 - ★ Antenna Heights of DTT and WSDs
 - ★ Channel Usage of DTT

• PMSE Protection

- Estimate the WSD's potential interference to PMSE;
- Compute the available TV white space and maximum transmission power for WSDs (with location uncertainty);
 - ★ Locations of PMSE
 - ★ Possible locations of WSDs
 - ★ Antenna Heights of WSDs
 - ★ Channel Usage of PMSE

• Uncertainty (Error) of Master Location

- Suppose a master reports location (x_0, y_0) with uncertainties $(\pm \Delta x, \pm \Delta y)$.
- Then, possible locations of the master:
 - * Rectangle centred on (x_0, y_0) with sides of length $2\Delta x$ and $2\Delta y$
 - * Cover a set of M pixels (see the Figure below M = 15)

Reported location of master (or geolocated slave)

- Uncertainty of Slave Location
 - Slaves are not required to report their locations to the master;
 - ► Hence, possible locations of slaves are whole coverage area of master:
 - * Circle centred on (x_0, y_0) with radii $d_0 + \sqrt{(\Delta x^2 + \Delta y^2)}$;
 - ★ d₀ is the transmission range of the master;
 - * Cover a set of N pixels (see the Figure below).

• Available TV White Space

- ▶ The TV white spaces that are available in all *N* pixels;
- Allowed Transmission Power (on each channel)
 - ▶ The minimum allowed transmission power in all *N* pixels.

• The key idea in USA is similar as that in UK;

Differences

- Coverage range is measured by smooth circle, instead of pixels;
- The available TV white space set for a WSD is only base on its own location, without considering the possible locations of its served WSDs (slaves):
 - * More available TV white spaces;
 - ★ Less transmission power constraints;
 - Higher potential interference to licensees;

WSD Design and Standard

• European Telecom Standards Institute (ETSI EN 203-598)

- Specify the standards that WSDs must comply with and test against;
- Intend to be harmonised across Europe;
- Specify the technical requirements for WSDs;
 - ★ Radio system
 - ★ Baseband system
 - ★ Mobility
 - *

4	Technical requirements specifications	12
4.1	Environmental profile	12
4.2	Conformance requirements	
4.2.1	Equipment types	
4.2.1.1	Equipment Type A	
4.2.1.2	2 Equipment Type B	

Communication Standard

• IEEE 802.11af

 Define modifications to both the 802.11 PHY and MAC layers to meet the legal requirements for channel access and coexistence in the TVWS

• IEEE 802.22

Luo-Gao-Huang (CUHK)

Spectrum Management and Optimization

- The database assists unlicensed TV white space access;
 - Unlicensed Shared Access (USA)
- The database assists licensed spectrum access;
 - Licensed/Authorized Shared Access (LSA/ASA)

Where geolocation database comes in: permitted spectrum/rules vs. location

- Major Technical Challenges
 - TVWS Availability Computation (for Database)
 - How to accurately computes the available TV channels in a particular location [Dawei Chen et al. 2009] [Tan Zhang et al. 2014][Xuhang Ying et al. 2013]
 - * Most important technical issue, Different in UK and USA
 - WSD Development
 - * How to design and standardize white space device (WSD)
 - Resource Management and Optimization (for Database and WSD)
 - ★ How to deploy and optimize a database-assisted TV white space network [Xiaojun Feng et al. 2011]

- Major Technical Challenges
 - TVWS Availability Computation (for Database)
 - How to accurately computes the available TV channels in a particular location [Dawei Chen et al. 2009] [Tan Zhang et al. 2014][Xuhang Ying et al. 2013]
 - * Most important technical issue, Different in UK and USA
 - WSD Development
 - * How to design and standardize white space device (WSD)
 - Resource Management and Optimization (for Database and WSD)
 - How to deploy and optimize a database-assisted TV white space network [Xiaojun Feng et al. 2011]
 - Database Development
 - How to design and manage a database [Vania Goncalves 2011] [Hanna Bogucka et al 2012]
 - Communication between WSD and Database
 - How does a mobile WSD identify the communication link [Z. Qin, Y. Gao, C. Parini, 2015]
 - Others

Outline

2 Technical Issues

Current Status

- Fast technology development and policy change worldwide
- Lacking of a systematic economics analysis

	Commercial Deployments Volume devices Smaller form factors Rural broadband Standards-based devices Campus networking
	Commercial Pilots Device & database certification Use case experimentation Vertical industries
ð	Regulatory Trials Technology feasibility Prototype devices Field test & measurements
R&D Basic research Lab trials	\checkmark
Economic Issues and Challenges

Economic issues

- Who will be involved in a TV white space business model?
- What kind of services will be supported in such a network?
- ► How to design efficient mechanism to guarantee the economics performance with low implementation complexity?

Economic Issues and Challenges

Economic issues

- Who will be involved in a TV white space business model?
- What kind of services will be supported in such a network?
- ► How to design efficient mechanism to guarantee the economics performance with low implementation complexity?

Challenges

- Heterogeneous TV white spaces
 - * licensed TV channels (Under-utilize): consider the licensee behavior
 - * Unlicensed TV channels: public resource and cannot be traded freely
- Heterogeneous database operators
 - Different interests and advantages

TV White Space Business Modeling

TV White Space Business Modeling

Spectrum Property

• Key Focus

- Define the economics role for each involved network entity;
- Analyze the economic behaviours of different players;
- Design the efficient incentive mechanism for the whole network.

- Database acts as the spectrum broker
 - Facilitate the interaction between the licensees and white space devices (WSDs)

- Database acts as the spectrum broker
 - Facilitate the interaction between the licensees and white space devices (WSDs)
- Each WSD is an infrastructure-based device (e.g., a base station)
 - Provides cellular-based wireless service to its subscribed end-users
- Each WSD serves unlicensed end-users using the obtained TV spectrum

- Database acts as the spectrum broker
 - Facilitate the interaction between the licensees and white space devices (WSDs)

• Each WSD is an infrastructure-based device (e.g., a base station)

- Provides cellular-based wireless service to its subscribed end-users
- Each WSD serves unlicensed end-users using the obtained TV spectrum
 - Under-utilized licensed TV spectrum
 - ★ Exclusive used by one WSD
 - ★ Be reserved by database in advanced

- Database acts as the spectrum broker
 - Facilitate the interaction between the licensees and white space devices (WSDs)

• Each WSD is an infrastructure-based device (e.g., a base station)

- Provides cellular-based wireless service to its subscribed end-users
- Each WSD serves unlicensed end-users using the obtained TV spectrum
 - Under-utilized licensed TV spectrum
 - ★ Exclusive used by one WSD
 - ★ Be reserved by database in advanced
 - Unlicensed TV spectrum
 - * Shared by multiple white space devices (WSDs)
 - ★ Be requested in real-time

Motivation

• WSDs Competition Market

- Multiple WSDs compete for the same pool of end-users
- WSDs serve the attracted end-users by using either the licensed TV spectrum or the unlicensed TV spectrum

Motivation

• WSDs Competition Market

- Multiple WSDs compete for the same pool of end-users
- WSDs serve the attracted end-users by using either the licensed TV spectrum or the unlicensed TV spectrum

The Key Problems

- Quantity Competition: What is the optimal reserve quantity of licensed TV spectrum, considering the uncertainty of demand?
- Price Competition: What is the optimal prices of TV spectrum to the end-users?

System Model

- Multiple WSDs compete for the same pool of end-users
- $\mathcal{M} = \{1, 2, ..., M\}$: the set of WSDs

Stage I: Wholesale Price Determination

The database determines TV channels wholesale prices (i.e., w for licensed TV spectrum and w^s for unlicensed TV spectrum).

Stage I: Wholesale Price Determination

The database determines TV channels wholesale prices (i.e., w for licensed TV spectrum and w^s for unlicensed TV spectrum).

Stage II: Price and Inventory Competition Game

WSDs determines the initial inventory and the service price; $\downarrow\downarrow$

Stage I: Wholesale Price Determination

The database determines TV channels wholesale prices (i.e., w for licensed TV spectrum and w^s for unlicensed TV spectrum).

Stage II: Price and Inventory Competition Game

WSDs determines the initial inventory and the service price;

Stage III: Demand Realized and Replenishment

End-users choose a WSD, and demands service from that WS-D;

WSDs replenish inventory by the unlicensed TV spectrum (if needed) and serve end-users;

WSDs determines the initial inventory and the service price;

Stage III: Demand Realized and Replenishment

End-users choose a WSD, and demands service from that WS-D;

WSDs replenish inventory by the unlicensed TV spectrum (if needed) and serve end-users;

• Three-stage hierarchical model: analyzed by backward induction

Stage III: Demand of End-users

• *d*: total demand of all active end-users

▶ Random variable with cumulative distribution function (c.d.f.) G(d)

Stage III: Demand of End-users

- d: total demand of all active end-users
 - Random variable with cumulative distribution function (c.d.f.) G(d)
- *d_m*: demand directed to WSD *m*
 - $\bullet \ d_m(p_1,\ldots,p_M) = d \cdot \theta_m(p_1,\ldots,p_M)$
 - * $\theta_m(p_1, \ldots, p_M)$: an average probability of an end- user choosing an WSD m

$$heta_m = \Pr\left\{ oldsymbol{U}_m^{\scriptscriptstyle\mathrm{EU}} \geq 0 \ \& \ oldsymbol{U}_m^{\scriptscriptstyle\mathrm{EU}} \geq \max_{i \in \mathcal{M}} oldsymbol{U}_i^{\scriptscriptstyle\mathrm{EU}}
ight\} = rac{\mathrm{e}^{R_m - p_m}}{1 + \sum_{i \in \mathcal{M}} \mathrm{e}^{R_i - p_i}}.$$

- * R_m is the average benefit (quality of WSD)
- Random variable related to all WSD' prices

- Price and Inventory competition game (PI-game)
 - Players: WSDs with set $\mathcal{M} = \{1, 2, \dots, M\}$
 - ▶ Strategies: Inventory b_m and price p_m , $\forall m \in M$
 - Payoff of WSD m: revenue cost

- Price and Inventory competition game (PI-game)
 - Players: WSDs with set $\mathcal{M} = \{1, 2, \dots, M\}$
 - ▶ Strategies: Inventory b_m and price p_m , $\forall m \in M$
 - Payoff of WSD m: revenue cost
- Challenge
 - This is an integrated investment and price competition game
 - Difficult to prove the uniqueness of Nash equilibrium directly

- Price and Inventory competition game (PI-game)
 - Players: WSDs with set $\mathcal{M} = \{1, 2, \dots, M\}$
 - ▶ Strategies: Inventory b_m and price p_m , $\forall m \in M$
 - Payoff of WSD m: revenue cost
- Challenge
 - This is an integrated investment and price competition game
 - Difficult to prove the uniqueness of Nash equilibrium directly
- Our method
 - Change the PI-game to a pure price competition game

- Price and Inventory competition game (PI-game)
 - Players: WSDs with set $\mathcal{M} = \{1, 2, \dots, M\}$
 - ▶ Strategies: Inventory b_m and price p_m , $\forall m \in M$
 - Payoff of WSD m: revenue cost
- Challenge
 - This is an integrated investment and price competition game
 - Difficult to prove the uniqueness of Nash equilibrium directly
- Our method
 - Change the PI-game to a pure price competition game

Theorem (Existence and Uniqueness)

- The reduced price game has a unique Nash Euqilibrium **p***
- The original PI-game has unique NE (**b**^{*}, **p**^{*})

Stage I: Wholesale Pricing Strategy

- Two kinds of wholesale pricing strategies
 - Database profit maximization (DPM)
 - ★ Profit-seeking database operator
 - * Operated by third-party business companies
 - ★ Maximizing his own profit

Stage I: Wholesale Pricing Strategy

• Two kinds of wholesale pricing strategies

- Database profit maximization (DPM)
 - ★ Profit-seeking database operator
 - * Operated by third-party business companies
 - ★ Maximizing his own profit
- Network profit maximization (NPM)
 - * Network-planning database operator
 - ★ Operate both WSDs and database
 - * Aim at maximizing the network profit

Stage I: Wholesale Pricing Strategy

• Two kinds of wholesale pricing strategies

- Database profit maximization (DPM)
 - ★ Profit-seeking database operator
 - * Operated by third-party business companies
 - Maximizing his own profit
- Network profit maximization (NPM)
 - * Network-planning database operator
 - ★ Operate both WSDs and database
 - * Aim at maximizing the network profit
- There exist a wholesale price pair that maximize the network profit/database's profit

Simulation Results: Network Welfare

- Network welfare: Profit of database + Profit of two WSDs
- QoS of WSD 1 is fixed: 5
- Network welfare increases with QoS provided by WSD 2

Simulation Results: Database Profit

• Database's profit increases with R₂ under DPM scheme

A higher QoS attracts more end-users

Simulation Results: Database Profit

• Database's profit first increases and then decreases with R₂ under NPM scheme

► QoS of WSD 1: 5

Luo-Gao-Huang (CUHK)

Summary

- We consider the competition of WSDs in the spectrum trading market
- We study the strategies of WSDs from a game-theoretic perspective
- We also study the database's wholesale pricing strategy

TV White Spaces

Licensed TV bands

Assigned to TV licensees but not fully utilized;

★ E.g., some TV program channels shutdown between 12:00am to 6:00am;

- TV licensees have ownerships, and can fully decide whether, when, where, and how to share these spectrum with unlicensed WSDs;
 - ★ E.g., ask for financial compensation from unlicensed WSDs;
- Business model: Spectrum Trading Market
 - * TV licensees: Sellers of Spectrum
 - * WSDs: Buyers of Spectrum
 - ★ Database: Agent/Broker

TV White Spaces

• Licensed TV bands

- Assigned to TV licensees but not fully utilized;
 - ★ E.g., some TV program channels shutdown between 12:00am to 6:00am;
- TV licensees have ownerships, and can fully decide whether, when, where, and how to share these spectrum with unlicensed WSDs;
 - ★ E.g., ask for financial compensation from unlicensed WSDs;
- Business model: Spectrum Trading Market
 - ★ TV licensees: Sellers of Spectrum
 - * WSDs: Buyers of Spectrum
 - ★ Database: Agent/Broker

• Unlicensed TV bands

- Not licensed to any TV licensee at a certain location;
 - Upgrade from analogue to digital TV: release a large amount of TV channels;
- Attitude of regulator: open and shared usage (FCC and Ofcom);
 - ★ E.g., like public resource, such as air and sunlight;
 - * Spectrum market model is usually not suitable, due to the lack of ownership;
- Business model: Information Trading Market
 - ★ Databases: Sellers of Information
 - ★ WSDs: Buyers of Information
Business Modeling Technics

• Spectrum Trading Market

- Target at Licensed TV bands
- TV licensees: Sellers of Spectrum
- WSDs: Buyers of Spectrum
- Databases: Agents/Brokers

Information Trading Market

- Target at Unlicensed TV bands
- Databases: Sellers of Information
- WSDs: Buyers of Information

Information Trading Market

Observations

- Different unlicensed white space channels may have different qualities for a particular WSD;
 - * E.g., due to different interferences from Licensed devices or other WSDs;
- Databases know more information regarding such quality than WSDs;
 - * E.g., Licensed devices' locations, channel occupancies, transmission powers, and other WSDs' locations and channel occupancies, etc.

Thoughts

- Can WSDs benefit from such advanced information regarding the quality of white space channels?
- If so, how to motivate databases to share such advanced information with WSDs?

An Example

• Consider a WSD at a particular location

- ▶ Available white space channels [*ch*1, *ch*2, *ch*3, *ch*4] (basic information)
- Interference levels [1, 2, 3, 4] or equivalent data rates [5, 2, 1, 0] (advanced information)
 - ★ Known by the database, but not known by the WSD

An Example

• Consider a WSD at a particular location

- ▶ Available white space channels [*ch*1, *ch*2, *ch*3, *ch*4] (basic information)
- Interference levels [1,2,3,4] or equivalent data rates [5,2,1,0] (advanced information)
 - $\star\,$ Known by the database, but not known by the WSD
- If not purchasing the advanced information
 - Receive the available white space channels only, and Choose an available channel randomly
 - Average data rate: $\frac{5+2+1+0}{4} = 2$

An Example

• Consider a WSD at a particular location

- ▶ Available white space channels [*ch*1, *ch*2, *ch*3, *ch*4] (basic information)
- Interference levels [1,2,3,4] or equivalent data rates [5,2,1,0] (advanced information)
 - $\star\,$ Known by the database, but not known by the WSD
- If not purchasing the advanced information
 - Receive the available white space channels only, and Choose an available channel randomly
 - Average data rate: $\frac{5+2+1+0}{4} = 2$
- If purchasing the advanced information
 - Receive both the available white space channels and the interference levels (or equivalent data rates), and Choose the best channel
 - Average data rate: 5

Information Market Model

- Key Idea: Databases sell the advanced information regarding the qualities of white space channels to unlicensed devices
 - Basic information: Available TV white space channels at a given location (free and mandatory)
 - Advanced information: Quality (e.g., interference level) of each white space channel (non-free and optional)

Information Market Model

- Key Idea: Databases sell the advanced information regarding the qualities of white space channels to unlicensed devices
 - Basic information: Available TV white space channels at a given location (free and mandatory)
 - Advanced information: Quality (e.g., interference level) of each white space channel (non-free and optional)

Key Problems

- How to explicitly define the advanced information
- How to accurately evaluate the advanced information
- How to choose the best purchasing behaviors for WSDs
- What is the market equilibrium point
- How to optimally pricing the advanced information for databases

TV White Space Network Model

• Network Model

▶ *M* Databases, *N* white space devices (WSDs), *K* white space channels

- Interference on each white space channel k
 - U_k: Interference from licensed devices

Fig: Interference from licensed devices (on channel 2) for WSD 6.

- Interference on each white space channel k
 - U_k : Interference from licensed devices
 - V_k : Interference from unknown outside systems

Fig: Interference from outside systems (on channel 2) for WSD 6.

- Interference on each white space channel k
 - ► U_k: Interference from licensed devices
 - V_k : Interference from unknown outside systems
 - $W_{k,n}$: Interference from an other WSD n

Fig: Interference from WSDs (on channel 2) for WSD 6.

• Total interference on channel k (for a particular WSD)

$$Z_k = U_k + V_k + \sum_{n \in \mathcal{N}_k} W_{k,n}$$

• Total interference on channel k (for a particular WSD)

$$Z_k = U_k + V_k + \sum_{n \in \mathcal{N}_k} W_{k,n}$$

• U_k : Interference from licensed devices \rightarrow known

• Total interference on channel k (for a particular WSD)

$$Z_k = U_k + V_k + \sum_{n \in \mathcal{N}_k} W_{k,n}$$

- U_k : Interference from licensed devices \rightarrow known
- V_k : Interference from unknown outside systems \rightarrow unknown

• Total interference on channel k (for a particular WSD)

$$Z_k = U_k + V_k + \sum_{n \in \mathcal{N}_k} W_{k,n}$$

- U_k : Interference from licensed devices \rightarrow known
- V_k : Interference from unknown outside systems \rightarrow unknown
- $W_{k,n}$: Interference from another WSD $n \rightarrow \text{known}$ or unknown
 - * If WSD *n* purchases the advanced information from the database, $W_{k,n}$ is known by that database
 - * If WSD *n* does not purchase the advanced information from the database, $W_{k,n}$ is not known by that database
- Advanced information of a database is defined as the interference components on each channel *k* that are known by the database.

• Advanced information of database *m* regarding channel *k*:

$$X_{k,m} = \underbrace{U_k}_{\text{Licensed Devices}} +$$

$$\underbrace{\sum_{n \in \mathcal{N}_{k,m}} W_{k,n}}_{WSDs Purchasing Database m Information}$$

• Advanced information of database *m* regarding channel *k*:

• Uncertain information of database *m* regarding channel *k*:

- Total interference: $Z_k = X_{k,m} + Y_{k,m}$ (for each database m)
- Each WSD has M + 2 channel selection strategies:
 - (a) Choose a channel randomly
 - **★** Expected data rate is: $B = E_Z[Rate(Z)]$

where Z is the random variable denoting the interference on any channel

- Total interference: $Z_k = X_{k,m} + Y_{k,m}$ (for each database m)
- Each WSD has M + 2 channel selection strategies:
 - (a) Choose a channel randomly
 - * Expected data rate is: $B = E_Z[Rate(Z)]$ where Z is the random variable denoting the interference on any channel
 - (b) Choose the best channel based on perfectly sensing
 - ★ Expected data rate is: $S = E_{Z_{(1)}}[Rate(Z_{(1)})]$ where $Z_{(1)} \triangleq \min\{Z_1, \dots, Z_K\}$ is the random variable denoting the minimal interference on all channels

- Total interference: $Z_k = X_{k,m} + Y_{k,m}$ (for each database m)
- Each WSD has M + 2 channel selection strategies:
 - (a) Choose a channel randomly
 - ***** Expected data rate is: $B = E_Z[Rate(Z)]$

where Z is the random variable denoting the interference on any channel

- (b) Choose the best channel based on perfectly sensing
 - ★ Expected data rate is: S = E_{Z(1)}[Rate(Z(1))] where Z₍₁₎ ≜ min{Z₁,..., Z_K} is the random variable denoting the minimal interference on all channels
- (c) Choose the channel based on advanced information of database m
 - * WSD will choose a channel k with the minimal $X_{k,m}$
 - ★ Expected data rate is: $A_m = E_{Z_{[m]}}[Rate(Z_{[m]})]$

where $Z_{[m]} \triangleq \min\{X_{1,m}, X_{2,m}, ..., X_{K,m}\} + Y_m$ is the random variable denoting the interference on the channel with minimum $X_{k,m}$

- When purchasing the advanced information from a database, WSDs always choose the channel with the minimal X_k
 - This implies that the database always knows the channel selection of the WSDs purchasing the advanced information

- When purchasing the advanced information from a database, WSDs always choose the channel with the minimal X_k
 - This implies that the database always knows the channel selection of the WSDs purchasing the advanced information

• Positive externality

- More WSDs purchasing the advanced information from a database,
- \rightarrow More information the database knows,
- \blacktriangleright \rightarrow More accurate the channel estimation for WSDs

Two-Stage Stackelberg Model

Stage I: Price Competition Game

Databases determine the information price;

∜

Two-Stage Stackelberg Model

Two-Stage Stackelberg Model

• We analyze the two-stage hierarchical model by backward induction.

• When choosing channel randomly, its utility is

 $\Pi^{\rm EU} = \theta \cdot B$

• When choosing channel based on sensing, its utility is

 $\Pi^{\rm EU} = \theta \cdot S - c$

• When using the database m's advanced information, its utility is

 $\Pi^{\rm EU} = \theta \cdot A_m(\eta_m) - \pi_m$

- θ : the WSD's evaluation for data rate
- c: the cost of sensing
- π_m : the price of database *m*'s advanced information
- η_m : the market share of database m

• Market Equilibrium

• Under market equilibrium, the market shares no longer change.

Market Equilibrium

The market converges to an equilibrium, if the following condition holds:

$$\triangle_m^t = \eta_m^t - \eta_m^{t-1} = 0, \ \forall m \in M$$

where η_m^t is the database *m*'s market share at stage *t*.

Market Equilibrium

The market converges to an equilibrium, if the following condition holds:

$$\triangle_m^t = \eta_m^t - \eta_m^{t-1} = 0, \ \forall m \in M$$

where η_m^t is the database *m*'s market share at stage *t*.

Existence and Uniqueness

Given a particular initial market share set $\{\eta_m\}_{m \in \mathcal{M}}$ and information price set $\{\pi_m\}_{m \in \mathcal{M}}$, the market always converges to a unique market share equilibrium.

• Price Competition Game

Players: *M* databases

• Price Competition Game

- Players: *M* databases
- ▶ Strategies: Information price π_m offered by each database $m \in \mathcal{M}$

• Price Competition Game

- Players: *M* databases
- ▶ Strategies: Information price π_m offered by each database $m \in \mathcal{M}$
- Payoffs: Profit of each database $m \in \mathcal{M}$

$$\Pi_m^{\rm DB}(\pi_m, \boldsymbol{\pi}_{-m}) = (\pi_m - c_m) \cdot \eta_m^*(\pi_m, \boldsymbol{\pi}_{-m})$$

- ★ *c_m*: operational cost of database *m*
- * η_m^* : equilibrium market share of database *m* in Stage II.

Nash Equilibrium

A price profile $\{\pi_m^*\}_{m\in\mathcal{M}}$ is called a price equilibrium, if

$$\pi_m^* = \arg \max_{\substack{\pi_m^* \ge 0}} \quad \Pi_m^{\text{DB}}(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$
$$= \arg \max_{\substack{\pi_m^* \ge 0}} \quad (\pi_m - c_m) \cdot \eta_m^*(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$

Nash Equilibrium

A price profile $\{\pi_m^*\}_{m\in\mathcal{M}}$ is called a price equilibrium, if

$$\pi_m^* = \arg \max_{\substack{\pi_m^* \ge 0}} \quad \Pi_m^{\text{DB}}(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$
$$= \arg \max_{\substack{\pi_m^* \ge 0}} \quad (\pi_m - c_m) \cdot \eta_m^*(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$

• Challenges

• Characterizing market equilibrium η_m^* as a function of prices $\{\pi_m\}_{m \in \mathcal{M}}$.

Nash Equilibrium

A price profile $\{\pi_m^*\}_{m\in\mathcal{M}}$ is called a price equilibrium, if

$$\pi_m^* = \arg \max_{\substack{\pi_m^* \ge 0}} \quad \Pi_m^{\text{DB}}(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$
$$= \arg \max_{\substack{\pi_m^* \ge 0}} \quad (\pi_m - c_m) \cdot \eta_m^*(\pi_m, \pi_{-m}), \ \forall m \in \mathcal{M}$$

• Challenges

• Characterizing market equilibrium η_m^* as a function of prices $\{\pi_m\}_{m \in \mathcal{M}}$.

Observations

• One-to-one correspondence between $\{\eta_m^*\}_{m \in \mathcal{M}}$ and $\{\pi_m\}_{m \in \mathcal{M}}$;

Our Solution

- Transform the price competition game into an equivalent market share competition game (MSCG).
 - ★ Players: *M* databases
 - ★ Strategies: Market share η_m of each database $m \in \mathcal{M}$
 - ★ Payoffs: Profit of each database $m \in M$,

$$\Pi_m^{\rm \tiny DB}(\eta_m, \boldsymbol{\eta}_{-m}) = \left(\pi_m^*(\eta_m, \boldsymbol{\eta}_{-m}) - \boldsymbol{c}_m\right) \cdot \eta_m$$

where price π_m^* is a function of market shares $\{\eta_m\}_{m \in \mathcal{M}}$.
Stage I: Price Competition Game Equilibrium

Existence of MSCG NE (Duopoly Market)

In the duopoly market with two databases, the market share competition game (MSCG) is a supermodular game with respect to η_1 and $-\eta_2$. Hence, there exists at least one equilibrium.

Stage I: Price Competition Game Equilibrium

Existence of MSCG NE (Duopoly Market)

In the duopoly market with two databases, the market share competition game (MSCG) is a supermodular game with respect to η_1 and $-\eta_2$. Hence, there exists at least one equilibrium.

Existence of MSCG NE (Oligopoly Market)

In the oligopoly market with more than two databases, there exists a pure-strategy Nash equilibrium, under the following positive network externality function:

$$\mathbf{g}(\eta_m) = \alpha_m + (\beta_m - \alpha_m) \cdot \eta_m^{\gamma_m}, \ \gamma_m \in (0, 1].$$

Monopoly Market

Monopoly Market: Single Database

- Database's revenue increases with the degree of licensee interference and the sensing cost α;
 - ★ A larger licensee interference or sensing cost makes the information more valuable.

Competitive Market

• Competitive Market: Multiple Database

- Each database market share decreases with the number of databases due to competition;
- ► Total database market share increases with the number of databases;
 - * Competition drives the information price down
 - ★ Low price attract more WSDs

Competitive Market

• Competitive Market: Multiple Database

- Each database's revenue decreases with the number of databases due to competition;
- Total database revenue first increases, and then decrease with the number of databases;
 - * Competition drives the information price down
 - ★ Low price attract more WSDs

Summary

Conclusion

- We proposed an information market for unlicensed TV channels;
- We characterized the positive externality of the information market;
- ▶ We analyzed the market equilibrium of the information market;
- We studied the price competition among databases.

Summary

Conclusion

- We proposed an information market for unlicensed TV channels;
- We characterized the positive externality of the information market;
- We analyzed the market equilibrium of the information market;
- We studied the price competition among databases.

Next Step

Joint consideration of licensed and unlicensed TV channels.

Business Models of TVWS Networks

Hybrid Market Model: Spectrum Market

- The spectrum licensee *leases* his licensed TV channels via the platform of the database to unlicensed users
 - the database's proximity to both licensees and unlicensed users
 - Users can lease licensed channels for exclusive usage

Hybrid Market Model: Information Market

 Basic Service (free): The database returns available unlicensed TV channels list to users without quality information

Hybrid Market Model: Information Market

- *Basic Service (free)*: The database returns available unlicensed TV channels list to users without quality information
- Advance Service (paid): The database returns available unlicensed TV channels list to users with quality information

Economics of TVWS

Property of Hybrid Market

• Positive externality

 More WSDs purchasing the advanced information from a database, more information the database knows, more accurate channel estimation information

Property of Hybrid Market

Positive externality

 More WSDs purchasing the advanced information from a database, more information the database knows, more accurate channel estimation information

• Negative externality

 Less WSDs leasing licensed TV channels increases the level of congestion (interference) of unlicensed TV channels

Property of Hybrid Market

Positive externality

 More WSDs purchasing the advanced information from a database, more information the database knows, more accurate channel estimation information

• Negative externality

 Less WSDs leasing licensed TV channels increases the level of congestion (interference) of unlicensed TV channels

• Competition and Cooperation

- Database and licensee compete for providing different services
- Database assists the licensee to display leasing information

Observations and Insights

• The market share equilibrium of the licensee is less than half

Observations and Insights

- The market share equilibrium of the licensee is less than half
- The database benefits from the positive network externality

Observations and Insights

- The market share equilibrium of the licensee is less than half
- The database benefits from the positive network externality
- The licensee benefits from the negative network externality

Conclusion

Background

- Historical Background
- Standardization Efforts
- Policy Considerations

Technique Issues

- Database and WSD Development
- TVWS Availability Computation
- Resource Management and Optimization

Business Models

- Spectrum Market Model
- Information Market Model
- Hybrid Market Model

Publications

- Overview
 - Y. Luo, L. Gao, and J. Huang, "Business Modeling for TV White Space Networks", IEEE Communications Magazine, vol. 53, no. 5, pp. 82-88, May 2015.

• Spectrum Trading Market

- Y. Luo, L. Gao, and J. Huang, "Spectrum Reservation Contract Design in TV White Space Networks", *IEEE Transactions on Cognitive Communications and Networking* (Invited Paper), forthcoming.
- Y. Luo, L. Gao, and J. Huang, "Price and Inventory Competition in Oligopoly TV White Space Markets", *IEEE Journal on Selected Areas in Communications (JSAC)*, vol. 33, no. 5, pp. 1002-1013, October 2014
- Y. Luo, L. Gao, and J. Huang, "White Space Ecosystem: A Secondary Network Operator's Perspective", IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, December 2013
- Y. Luo, L. Gao, and J. Huang, "Spectrum Broker by Geo-location Database", IEEE Global Communications Conference (GLOBECOM), Anaheim, USA, December 2012

• Information Trading Market

- Y. Luo, L. Gao, and J. Huang, "MINE GOLD to Deliver Green Cognitive Communications", IEEE Journal on Selected Areas in Communications (JSAC), forthcoming
- Y. Luo, L. Gao, and J. Huang, "Trade Information, Not Spectrum: A Novel TV White Space Information Market Model", *IEEE WiOpt* (Best Paper Award), Hammamet, Tunisia, May 2014
- Y. Luo, L. Gao, and J. Huang, "Information Market for TV White Space Market", IEEE Workshop on Smart Data Pricing (SDP) (Invited Paper), Toronto, Canada, May 2014

• Hybrid Spectrum and Information Trading Market

 Y. Luo, L. Gao, and J. Huang, "HySIM: A Hybrid Spectrum and Information Market for TV White Space Networks", *IEEE International Conference on Computer Communications* (*INFOCOM*), Hong Kong, 2015

Google "Jianwei Huang"

http://jianwei.ie.cuhk.edu.hk/